Build RAG Chatbot with LangChain, Zilliz Cloud, Mistral AI Pixtral, and HuggingFace all-MiniLM-L12-v1
Introduction to RAG
Retrieval-Augmented Generation (RAG) is a game-changer for GenAI applications, especially in conversational AI. It combines the power of pre-trained large language models (LLMs) like OpenAI’s GPT with external knowledge sources stored in vector databases such as Milvus and Zilliz Cloud, allowing for more accurate, contextually relevant, and up-to-date response generation. A RAG pipeline usually consists of four basic components: a vector database, an embedding model, an LLM, and a framework.
Key Components We'll Use for This RAG Chatbot
This tutorial shows you how to build a simple RAG chatbot in Python using the following components:
- LangChain: An open-source framework that helps you orchestrate the interaction between LLMs, vector stores, embedding models, etc, making it easier to integrate a RAG pipeline.
- Zilliz Cloud: a fully managed vector database-as-a-service platform built on top of the open-source Milvus, designed to handle high-performance vector data processing at scale. It enables organizations to efficiently store, search, and analyze large volumes of unstructured data, such as text, images, or audio, by leveraging advanced vector search technology. It offers a free tier supporting up to 1 million vectors.
- Mistral AI Pixtral: Pixtral is a cutting-edge image generation model designed for high-quality visual content creation. With a focus on artistic style transfer and detail accuracy, it excels in transforming text prompts into vibrant images. Ideal for applications in design, marketing, and creative fields, Pixtral enhances workflows with its versatility and aesthetic precision.
- HuggingFace all-MiniLM-L12-v1: This model is a lightweight transformer designed for efficient natural language understanding and generation tasks. It excels in providing high-quality embeddings for various applications, including search, clustering, and conversational AI, while maintaining a small footprint for faster inference and deployment. Ideal for resource-constrained environments or mobile applications, it offers a balance between performance and efficiency.
By the end of this tutorial, you’ll have a functional chatbot capable of answering questions based on a custom knowledge base.
Note: Since we may use proprietary models in our tutorials, make sure you have the required API key beforehand.
Step 1: Install and Set Up LangChain
%pip install --quiet --upgrade langchain-text-splitters langchain-community langgraph
Step 2: Install and Set Up Mistral AI Pixtral
pip install -qU "langchain[mistralai]"
import getpass
import os
if not os.environ.get("MISTRAL_API_KEY"):
os.environ["MISTRAL_API_KEY"] = getpass.getpass("Enter API key for Mistral AI: ")
from langchain.chat_models import init_chat_model
llm = init_chat_model("pixtral-12b-2409", model_provider="mistralai")
Step 3: Install and Set Up HuggingFace all-MiniLM-L12-v1
pip install -qU langchain-huggingface
from langchain_huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L12-v1")
Step 4: Install and Set Up Zilliz Cloud
pip install -qU langchain-milvus
from langchain_milvus import Zilliz
vector_store = Zilliz(
embedding_function=embeddings,
connection_args={
"uri": ZILLIZ_CLOUD_URI,
"token": ZILLIZ_CLOUD_TOKEN,
},
)
Step 5: Build a RAG Chatbot
Now that you’ve set up all components, let’s start to build a simple chatbot. We’ll use the Milvus introduction doc as a private knowledge base. You can replace it with your own dataset to customize your RAG chatbot.
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict
# Load and chunk contents of the blog
loader = WebBaseLoader(
web_paths=("https://milvus.io/docs/overview.md",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("doc-style doc-post-content")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
all_splits = text_splitter.split_documents(docs)
# Index chunks
_ = vector_store.add_documents(documents=all_splits)
# Define prompt for question-answering
prompt = hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
context: List[Document]
answer: str
# Define application steps
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
# Compile application and test
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
Test the Chatbot
Yeah! You've built your own chatbot. Let's ask the chatbot a question.
response = graph.invoke({"question": "What data types does Milvus support?"})
print(response["answer"])
Example Output
Milvus supports various data types including sparse vectors, binary vectors, JSON, and arrays. Additionally, it handles common numerical and character types, making it versatile for different data modeling needs. This allows users to manage unstructured or multi-modal data efficiently.
Optimization Tips
As you build your RAG system, optimization is key to ensuring peak performance and efficiency. While setting up the components is an essential first step, fine-tuning each one will help you create a solution that works even better and scales seamlessly. In this section, we’ll share some practical tips for optimizing all these components, giving you the edge to build smarter, faster, and more responsive RAG applications.
LangChain optimization tips
To optimize LangChain, focus on minimizing redundant operations in your workflow by structuring your chains and agents efficiently. Use caching to avoid repeated computations, speeding up your system, and experiment with modular design to ensure that components like models or databases can be easily swapped out. This will provide both flexibility and efficiency, allowing you to quickly scale your system without unnecessary delays or complications.
Zilliz Cloud optimization tips
Optimizing Zilliz Cloud for a RAG system involves efficient index selection, query tuning, and resource management. Use Hierarchical Navigable Small World (HNSW) indexing for high-speed, approximate nearest neighbor search while balancing recall and efficiency. Fine-tune ef_construction and M parameters based on your dataset size and query workload to optimize search accuracy and latency. Enable dynamic scaling to handle fluctuating workloads efficiently, ensuring smooth performance under varying query loads. Implement data partitioning to improve retrieval speed by grouping related data, reducing unnecessary comparisons. Regularly update and optimize embeddings to keep results relevant, particularly when dealing with evolving datasets. Use hybrid search techniques, such as combining vector and keyword search, to improve response quality. Monitor system metrics in Zilliz Cloud’s dashboard and adjust configurations accordingly to maintain low-latency, high-throughput performance.
Mistral AI Pixtral optimization tips
Pixtral is optimized for multimodal RAG applications, requiring careful management of both textual and visual data retrieval. Improve retrieval efficiency by using specialized embeddings for different modalities—vector search for text and CLIP-based embeddings for images. Implement a multimodal ranking system to prioritize the most contextually relevant passages and images. Optimize model performance by structuring input prompts effectively, ensuring text and visual information are well-integrated without unnecessary repetition. Fine-tune temperature settings based on response requirements—lower values (0.1–0.2) for accuracy-driven applications, higher values for creative outputs. If deploying at scale, use parallel inference for handling large multimodal datasets efficiently. Streamline inference by leveraging batching and caching strategies, especially when handling frequently queried images and text pairs.
HuggingFace all-MiniLM-L12-v1 optimization tips
To optimize the HuggingFace all-MiniLM-L12-v1 model for your Retrieval-Augmented Generation (RAG) setup, consider implementing mixed precision training to speed up computations and reduce memory usage, enabling you to handle larger batch sizes. Experiment with layer freezing during fine-tuning to preserve certain parameters while optimizing others, ensuring faster convergence. Use an efficient data preprocessing pipeline to reduce input bottlenecks, and implement caching mechanisms for frequently accessed data. Furthermore, leverage model distillation techniques to create smaller, faster versions of the model that maintain comparable performance, and experiment with different pooling strategies to find the most effective way to condense retrieved documents for better context input. Lastly, regularly monitor and fine-tune hyperparameters such as learning rate and batch size based on validation performance to achieve optimal results.
By implementing these tips across your components, you'll be able to enhance the performance and functionality of your RAG system, ensuring it’s optimized for both speed and accuracy. Keep testing, iterating, and refining your setup to stay ahead in the ever-evolving world of AI development.
RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
Estimating the cost of a Retrieval-Augmented Generation (RAG) pipeline involves analyzing expenses across vector storage, compute resources, and API usage. Key cost drivers include vector database queries, embedding generation, and LLM inference.
RAG Cost Calculator is a free tool that quickly estimates the cost of building a RAG pipeline, including chunking, embedding, vector storage/search, and LLM generation. It also helps you identify cost-saving opportunities and achieve up to 10x cost reduction on vector databases with the serverless option.
Calculate your RAG cost
What Have You Learned?
By diving into this tutorial, you’ve unlocked the power of integrating cutting-edge tools to build a robust RAG system from scratch! You learned how LangChain acts as the glue, seamlessly orchestrating the flow of data between components while simplifying complex workflows like document loading, chunking, and prompt engineering. Zilliz Cloud stepped in as your high-performance vector database, storing and retrieving embeddings at scale, ensuring your system handles real-world data with speed and precision. The Mistral AI Pixtral model became your creative powerhouse, generating human-like responses by synthesizing retrieved context, while Hugging Face’s all-MiniLM-L12-v1 embedding model transformed text into rich numerical representations, bridging the gap between unstructured data and machine understanding. Together, these tools formed a dynamic pipeline that turns raw information into actionable insights—whether you’re building a chatbot, a research assistant, or an enterprise knowledge base.
But the journey doesn’t stop there! You also picked up pro tips for optimizing your RAG system, like balancing chunk sizes for relevance and efficiency, tuning retrieval parameters, and leveraging metadata to supercharge search accuracy. The free RAG cost calculator you explored helps you estimate expenses upfront, empowering you to make smart, budget-friendly decisions. Now, armed with this toolkit, you’re ready to innovate. Imagine the applications you could build—personalized learning platforms, hyper-contextual customer support, or even AI-driven content creators. The possibilities are endless, and the tools are in your hands. So go forth, experiment fearlessly, refine relentlessly, and let your creativity shape the future of intelligent systems. Your next breakthrough is just a few lines of code away—start building today! 🚀
Further Resources
🌟 In addition to this RAG tutorial, unleash your full potential with these incredible resources to level up your RAG skills.
- How to Build a Multimodal RAG | Documentation
- How to Enhance the Performance of Your RAG Pipeline
- Graph RAG with Milvus | Documentation
- How to Evaluate RAG Applications - Zilliz Learn
- Generative AI Resource Hub | Zilliz
We'd Love to Hear What You Think!
We’d love to hear your thoughts! 🌟 Leave your questions or comments below or join our vibrant Milvus Discord community to share your experiences, ask questions, or connect with thousands of AI enthusiasts. Your journey matters to us!
If you like this tutorial, show your support by giving our Milvus GitHub repo a star ⭐—it means the world to us and inspires us to keep creating! 💖
- Introduction to RAG
- Key Components We'll Use for This RAG Chatbot
- Step 1: Install and Set Up LangChain
- Step 2: Install and Set Up Mistral AI Pixtral
- Step 3: Install and Set Up HuggingFace all-MiniLM-L12-v1
- Step 4: Install and Set Up Zilliz Cloud
- Step 5: Build a RAG Chatbot
- Optimization Tips
- RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
- What Have You Learned?
- Further Resources
- We'd Love to Hear What You Think!
Content
Vector Database at Scale
Zilliz Cloud is a fully-managed vector database built for scale, perfect for your RAG apps.
Try Zilliz Cloud for Free