Build RAG Chatbot with LangChain, Milvus, Google Vertex AI Gemini 2.0 Pro, and mistral-embed
Introduction to RAG
Retrieval-Augmented Generation (RAG) is a game-changer for GenAI applications, especially in conversational AI. It combines the power of pre-trained large language models (LLMs) like OpenAI’s GPT with external knowledge sources stored in vector databases such as Milvus and Zilliz Cloud, allowing for more accurate, contextually relevant, and up-to-date response generation. A RAG pipeline usually consists of four basic components: a vector database, an embedding model, an LLM, and a framework.
Key Components We'll Use for This RAG Chatbot
This tutorial shows you how to build a simple RAG chatbot in Python using the following components:
- LangChain: An open-source framework that helps you orchestrate the interaction between LLMs, vector stores, embedding models, etc, making it easier to integrate a RAG pipeline.
- Milvus: An open-source vector database optimized to store, index, and search large-scale vector embeddings efficiently, perfect for use cases like RAG, semantic search, and recommender systems. If you hate to manage your own infrastructure, we recommend using Zilliz Cloud, which is a fully managed vector database service built on Milvus and offers a free tier supporting up to 1 million vectors.
- Google Vertex AI Gemini 2.0 Pro: This advanced AI model integrates robust machine learning capabilities for diverse applications, from natural language processing to image analysis. Its strengths lie in multi-modal understanding and rapid deployment, making it ideal for enterprises seeking to leverage AI for enhanced automation and decision-making across various sectors.
- Mistral-Embed: Mistral-Embed is a cutting-edge embedding model designed for high-dimensional text representation. It excels in tasks such as semantic search, similarity measurement, and recommendation systems, providing accurate contextual embeddings. Ideal for enhancing NLP applications, it balances performance with scalability, making it suitable for both research and real-world implementations.
By the end of this tutorial, you’ll have a functional chatbot capable of answering questions based on a custom knowledge base.
Note: Since we may use proprietary models in our tutorials, make sure you have the required API key beforehand.
Step 1: Install and Set Up LangChain
%pip install --quiet --upgrade langchain-text-splitters langchain-community langgraph
Step 2: Install and Set Up Google Vertex AI Gemini 2.0 Pro
pip install -qU "langchain[google-vertexai]"
# Ensure your VertexAI credentials are configured
from langchain.chat_models import init_chat_model
llm = init_chat_model("gemini-2.0-pro-exp-02-05", model_provider="google_vertexai")
Step 3: Install and Set Up mistral-embed
pip install -qU langchain-mistralai
import getpass
import os
if not os.environ.get("MISTRALAI_API_KEY"):
os.environ["MISTRALAI_API_KEY"] = getpass.getpass("Enter API key for MistralAI: ")
from langchain_mistralai import MistralAIEmbeddings
embeddings = MistralAIEmbeddings(model="mistral-embed")
Step 4: Install and Set Up Milvus
pip install -qU langchain-milvus
from langchain_milvus import Milvus
vector_store = Milvus(embedding_function=embeddings)
Step 5: Build a RAG Chatbot
Now that you’ve set up all components, let’s start to build a simple chatbot. We’ll use the Milvus introduction doc as a private knowledge base. You can replace it with your own dataset to customize your RAG chatbot.
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict
# Load and chunk contents of the blog
loader = WebBaseLoader(
web_paths=("https://milvus.io/docs/overview.md",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("doc-style doc-post-content")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
all_splits = text_splitter.split_documents(docs)
# Index chunks
_ = vector_store.add_documents(documents=all_splits)
# Define prompt for question-answering
prompt = hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
context: List[Document]
answer: str
# Define application steps
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
# Compile application and test
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
Test the Chatbot
Yeah! You've built your own chatbot. Let's ask the chatbot a question.
response = graph.invoke({"question": "What data types does Milvus support?"})
print(response["answer"])
Example Output
Milvus supports various data types including sparse vectors, binary vectors, JSON, and arrays. Additionally, it handles common numerical and character types, making it versatile for different data modeling needs. This allows users to manage unstructured or multi-modal data efficiently.
Optimization Tips
As you build your RAG system, optimization is key to ensuring peak performance and efficiency. While setting up the components is an essential first step, fine-tuning each one will help you create a solution that works even better and scales seamlessly. In this section, we’ll share some practical tips for optimizing all these components, giving you the edge to build smarter, faster, and more responsive RAG applications.
LangChain optimization tips
To optimize LangChain, focus on minimizing redundant operations in your workflow by structuring your chains and agents efficiently. Use caching to avoid repeated computations, speeding up your system, and experiment with modular design to ensure that components like models or databases can be easily swapped out. This will provide both flexibility and efficiency, allowing you to quickly scale your system without unnecessary delays or complications.
Milvus optimization tips
Milvus serves as a highly efficient vector database, critical for retrieval tasks in a RAG system. To optimize its performance, ensure that indexes are properly built to balance speed and accuracy; consider utilizing HNSW (Hierarchical Navigable Small World) for efficient nearest neighbor search where response time is crucial. Partitioning data based on usage patterns can enhance query performance and reduce load times, enabling better scalability. Regularly monitor and adjust cache settings based on query frequency to avoid latency during data retrieval. Employ batch processing for vector insertions, which can minimize database lock contention and enhance overall throughput. Additionally, fine-tune the model parameters by experimenting with the dimensionality of the vectors; higher dimensions can improve retrieval accuracy but may increase search time, necessitating a balance tailored to your specific use case and hardware infrastructure.
Google Vertex AI Gemini 2.0 Pro optimization tips
Gemini 2.0 Pro is designed for advanced reasoning, making it ideal for RAG applications requiring deep contextual understanding. Optimize retrieval by using multi-stage ranking techniques to ensure only the most relevant documents are included in context. Keep prompts structured and logical, with key information presented upfront. Adjust temperature (0.1–0.3) for precise control over response style and accuracy. Use Google’s caching and batching mechanisms to improve efficiency and reduce API costs. Streaming responses can enhance real-time applications by reducing perceived latency. If deploying multiple models, reserve Gemini 2.0 Pro for in-depth analysis while using smaller models for basic retrieval and summarization.
mistral-embed optimization tips
mistral-embed is a versatile embedding model suitable for diverse text-based RAG applications. To enhance retrieval, optimize embedding quality by fine-tuning on domain-specific data to capture nuanced semantic relationships. Use efficient vector search techniques like FAISS or HNSW to quickly identify relevant documents from large datasets. For better storage management, compress embeddings without sacrificing accuracy, such as through quantization or dimensionality reduction. To maximize throughput, batch embedding requests and use multi-threading to parallelize computations. Regularly update the embedding store with new data to ensure freshness and accuracy in retrieval. Optimize model performance by tuning hyperparameters such as temperature and top-k to balance precision and diversity in retrieved results.
By implementing these tips across your components, you'll be able to enhance the performance and functionality of your RAG system, ensuring it’s optimized for both speed and accuracy. Keep testing, iterating, and refining your setup to stay ahead in the ever-evolving world of AI development.
RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
Estimating the cost of a Retrieval-Augmented Generation (RAG) pipeline involves analyzing expenses across vector storage, compute resources, and API usage. Key cost drivers include vector database queries, embedding generation, and LLM inference.
RAG Cost Calculator is a free tool that quickly estimates the cost of building a RAG pipeline, including chunking, embedding, vector storage/search, and LLM generation. It also helps you identify cost-saving opportunities and achieve up to 10x cost reduction on vector databases with the serverless option.
Calculate your RAG cost
What Have You Learned?
Wow, what a journey we've been on! Through this tutorial, you've delved into the exciting world of building a cutting-edge RAG (Retrieval-Augmented Generation) system, and we hope you're feeling just as inspired as we are. You’ve learned how to seamlessly weave together the essential components: a robust framework, an efficient vector database, a powerful large language model, and a sophisticated embedding model. Each piece plays a vital role in creating a system that's not just functional but also capable of understanding and generating nuanced, context-aware responses.
The framework serves as the glue that binds everything together, ensuring smooth communication between all components. It’s like the conductor of an orchestra, harmonizing the unique capabilities of your vector database, which powers lightning-fast searches and retrievals, keeping your application responsive and efficient. We can't forget the massive potential of the LLM, specifically the Google Vertex AI Gemini 2.0 Pro, which brings conversational intelligence to the forefront, allowing for dynamic, engaging interactions. And of course, the mistral-embed model enriches your system with its ability to generate deep, semantic representations that enhance understanding and context.
Remember those optimization tips we shared? And the free cost calculator? They’re not just nice-to-haves; they’re your keys to refining your application to be even more effective.
So, what’s next? Don't let your newfound knowledge sit idle! Start building, optimizing, and innovating your very own RAG applications. The possibilities are endless, and the world is waiting for your unique contributions. Dive in, experiment, and let your creativity flow. The excitement of your journey is just beginning, and we can’t wait to see where it takes you!
Further Resources
🌟 In addition to this RAG tutorial, unleash your full potential with these incredible resources to level up your RAG skills.
- How to Build a Multimodal RAG | Documentation
- How to Enhance the Performance of Your RAG Pipeline
- Graph RAG with Milvus | Documentation
- How to Evaluate RAG Applications - Zilliz Learn
- Generative AI Resource Hub | Zilliz
We'd Love to Hear What You Think!
We’d love to hear your thoughts! 🌟 Leave your questions or comments below or join our vibrant Milvus Discord community to share your experiences, ask questions, or connect with thousands of AI enthusiasts. Your journey matters to us!
If you like this tutorial, show your support by giving our Milvus GitHub repo a star ⭐—it means the world to us and inspires us to keep creating! 💖
- Introduction to RAG
- Key Components We'll Use for This RAG Chatbot
- Step 1: Install and Set Up LangChain
- Step 2: Install and Set Up Google Vertex AI Gemini 2.0 Pro
- Step 3: Install and Set Up mistral-embed
- Step 4: Install and Set Up Milvus
- Step 5: Build a RAG Chatbot
- Optimization Tips
- RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
- What Have You Learned?
- Further Resources
- We'd Love to Hear What You Think!
Content
Vector Database at Scale
Zilliz Cloud is a fully-managed vector database built for scale, perfect for your RAG apps.
Try Zilliz Cloud for Free