Build RAG Chatbot with LangChain, Faiss, Mistral AI Mistral Large, and IBM slate-125m-english-rtrvr-v2
Introduction to RAG
Retrieval-Augmented Generation (RAG) is a game-changer for GenAI applications, especially in conversational AI. It combines the power of pre-trained large language models (LLMs) like OpenAI’s GPT with external knowledge sources stored in vector databases such as Milvus and Zilliz Cloud, allowing for more accurate, contextually relevant, and up-to-date response generation. A RAG pipeline usually consists of four basic components: a vector database, an embedding model, an LLM, and a framework.
Key Components We'll Use for This RAG Chatbot
This tutorial shows you how to build a simple RAG chatbot in Python using the following components:
- LangChain: An open-source framework that helps you orchestrate the interaction between LLMs, vector stores, embedding models, etc, making it easier to integrate a RAG pipeline.
- Faiss: also known as Facebook AI Similarity Search, is an open-source vector search library that allows developers to quickly search for semantically similar multimedia data within a massive dataset of unstructured data. (If you want a much more scalable solution or hate to manage your own infrastructure, we recommend using Zilliz Cloud, which is a fully managed vector database service built on the open-source Milvus and offers a free tier supporting up to 1 million vectors.)
- Mistral AI Mistral Large: This model offers a high-performance solution for a range of natural language processing tasks. With a focus on large-scale text generation and comprehension, it excels in handling complex queries and generating nuanced responses. Ideal for applications in content creation, conversational agents, and research analysis, Mistral Large combines versatility with efficiency.
- IBM slate-125m-english-rtrvr-v2: This AI model is designed for natural language understanding and text retrieval tasks. Leveraging advanced training techniques, it excels at processing and retrieving relevant information from large datasets, making it ideal for applications in chatbots, customer support, and content recommendation systems. Its strength lies in its ability to comprehend context and deliver accurate responses efficiently.
By the end of this tutorial, you’ll have a functional chatbot capable of answering questions based on a custom knowledge base.
Note: Since we may use proprietary models in our tutorials, make sure you have the required API key beforehand.
Step 1: Install and Set Up LangChain
%pip install --quiet --upgrade langchain-text-splitters langchain-community langgraph
Step 2: Install and Set Up Mistral AI Mistral Large
pip install -qU "langchain[mistralai]"
import getpass
import os
if not os.environ.get("MISTRAL_API_KEY"):
os.environ["MISTRAL_API_KEY"] = getpass.getpass("Enter API key for Mistral AI: ")
from langchain.chat_models import init_chat_model
llm = init_chat_model("mistral-large-latest", model_provider="mistralai")
Step 3: Install and Set Up IBM slate-125m-english-rtrvr-v2
pip install -qU langchain-ibm
import getpass
import os
if not os.environ.get("WATSONX_APIKEY"):
os.environ["WATSONX_APIKEY"] = getpass.getpass("Enter API key for IBM watsonx: ")
from langchain_ibm import WatsonxEmbeddings
embeddings = WatsonxEmbeddings(
model_id="ibm/slate-125m-english-rtrvr-v2",
url="https://us-south.ml.cloud.ibm.com",
project_id="<WATSONX PROJECT_ID>",
)
Step 4: Install and Set Up Faiss
pip install -qU langchain-community
from langchain_community.vectorstores import FAISS
vector_store = FAISS(embedding_function=embeddings)
Step 5: Build a RAG Chatbot
Now that you’ve set up all components, let’s start to build a simple chatbot. We’ll use the Milvus introduction doc as a private knowledge base. You can replace it with your own dataset to customize your RAG chatbot.
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict
# Load and chunk contents of the blog
loader = WebBaseLoader(
web_paths=("https://milvus.io/docs/overview.md",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("doc-style doc-post-content")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
all_splits = text_splitter.split_documents(docs)
# Index chunks
_ = vector_store.add_documents(documents=all_splits)
# Define prompt for question-answering
prompt = hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
context: List[Document]
answer: str
# Define application steps
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
# Compile application and test
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
Test the Chatbot
Yeah! You've built your own chatbot. Let's ask the chatbot a question.
response = graph.invoke({"question": "What data types does Milvus support?"})
print(response["answer"])
Example Output
Milvus supports various data types including sparse vectors, binary vectors, JSON, and arrays. Additionally, it handles common numerical and character types, making it versatile for different data modeling needs. This allows users to manage unstructured or multi-modal data efficiently.
Optimization Tips
As you build your RAG system, optimization is key to ensuring peak performance and efficiency. While setting up the components is an essential first step, fine-tuning each one will help you create a solution that works even better and scales seamlessly. In this section, we’ll share some practical tips for optimizing all these components, giving you the edge to build smarter, faster, and more responsive RAG applications.
LangChain optimization tips
To optimize LangChain, focus on minimizing redundant operations in your workflow by structuring your chains and agents efficiently. Use caching to avoid repeated computations, speeding up your system, and experiment with modular design to ensure that components like models or databases can be easily swapped out. This will provide both flexibility and efficiency, allowing you to quickly scale your system without unnecessary delays or complications.
Faiss Optimization Tips
To enhance the performance of the Faiss library in a Retrieval-Augmented Generation (RAG) system, begin by selecting the appropriate index type based on your data volume and query speed requirements; for example, using an IVF (Inverted File) index can significantly speed up queries on large datasets by reducing the search space. Optimize your indexing process by using the nlist
parameter to partition data into smaller clusters and set an appropriate number of probes (nprobe
) during retrieval to balance between speed and accuracy. Ensure the vectors are properly normalized and consider using 16-bit or 8-bit quantization during indexing to reduce memory footprints for large datasets while maintaining reasonable retrieval accuracy. Additionally, consider leveraging GPU acceleration if available, as Faiss highly benefits from parallel processing, leading to faster nearest neighbor searches. Continuous fine-tuning and benchmarking with varying parameters and configurations can guide you in finding the most efficient setup specific to your data characteristics and retrieval requirements.
Mistral AI Mistral Large optimization tips
Mistral Large is a high-capacity model suitable for complex reasoning and in-depth retrieval tasks in RAG applications. To improve efficiency, use advanced reranking models to prioritize top-quality retrieval results, ensuring only the most relevant information is included in the context window. Optimize token efficiency by segmenting and structuring input prompts logically, avoiding excessive context that may slow down inference. Fine-tune temperature (0.1–0.2 for factual queries, up to 0.5 for creative reasoning) and sampling parameters to maintain response quality. Use dynamic retrieval strategies—retrieving broader context for ambiguous queries and narrowing the scope for well-defined questions. Deploy caching and asynchronous processing for handling high-throughput workloads efficiently. If running Mistral Large in a cloud environment, allocate resources dynamically to balance performance and cost.
IBM slate-125m-english-rtrvr-v2 optimization tips
To optimize the IBM slate-125m-english-rtrvr-v2 in a Retrieval-Augmented Generation (RAG) setup, start by fine-tuning the model on domain-specific data relevant to your application, as it enhances response quality. Implement a caching mechanism for frequently accessed documents to reduce retrieval latency. Experiment with query reformulation techniques to improve retrieval accuracy by making the queries more aligned with the indexed content. Additionally, ensure that your indexing process is efficient by leveraging parallel computations, and regularly monitor the performance metrics to identify and address bottlenecks. Lastly, employ an ensemble approach by combining multiple models or retrieval strategies to boost the robustness and diversity of generated outputs.
By implementing these tips across your components, you'll be able to enhance the performance and functionality of your RAG system, ensuring it’s optimized for both speed and accuracy. Keep testing, iterating, and refining your setup to stay ahead in the ever-evolving world of AI development.
RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
Estimating the cost of a Retrieval-Augmented Generation (RAG) pipeline involves analyzing expenses across vector storage, compute resources, and API usage. Key cost drivers include vector database queries, embedding generation, and LLM inference.
RAG Cost Calculator is a free tool that quickly estimates the cost of building a RAG pipeline, including chunking, embedding, vector storage/search, and LLM generation. It also helps you identify cost-saving opportunities and achieve up to 10x cost reduction on vector databases with the serverless option.
Calculate your RAG cost
What Have You Learned?
By diving into this tutorial, you’ve unlocked the power of combining cutting-edge tools to build a Retrieval-Augmented Generation (RAG) system from the ground up! You learned how LangChain acts as the glue that ties everything together, orchestrating workflows and simplifying the integration of your components. With Faiss as your vector database, you saw firsthand how lightning-fast similarity searches can retrieve the most relevant context for your queries, even with massive datasets. Then came Mistral AI’s Mistral Large, a powerhouse language model that turns retrieved information into coherent, human-like responses, showcasing its knack for understanding nuance and delivering high-quality outputs. And let’s not forget the IBM slate-125m-english-rtrvr-v2 embedding model, which transformed your raw text into meaningful vector representations, ensuring your retrieval step is both accurate and efficient. Together, these tools form a seamless pipeline that supercharges LLMs with dynamic, context-aware knowledge!
But the learning didn’t stop there! You also picked up optimization tricks—like tuning chunk sizes for embeddings and balancing speed with accuracy in Faiss—to squeeze every drop of performance out of your system. The free RAG cost calculator introduced in the tutorial is your secret weapon for budgeting and scaling projects without surprises. Now that you’ve seen how these pieces fit together, imagine the possibilities: custom chatbots, research assistants, or even AI-powered tools for your favorite niche. The world of RAG is yours to explore, tweak, and innovate upon. So fire up your IDE, experiment with different models, and start building something amazing. You’ve got the skills, the tools, and the vision—now go turn those ideas into reality! 🚀
Further Resources
🌟 In addition to this RAG tutorial, unleash your full potential with these incredible resources to level up your RAG skills.
- How to Build a Multimodal RAG | Documentation
- How to Enhance the Performance of Your RAG Pipeline
- Graph RAG with Milvus | Documentation
- How to Evaluate RAG Applications - Zilliz Learn
- Generative AI Resource Hub | Zilliz
We'd Love to Hear What You Think!
We’d love to hear your thoughts! 🌟 Leave your questions or comments below or join our vibrant Milvus Discord community to share your experiences, ask questions, or connect with thousands of AI enthusiasts. Your journey matters to us!
If you like this tutorial, show your support by giving our Milvus GitHub repo a star ⭐—it means the world to us and inspires us to keep creating! 💖
- Introduction to RAG
- Key Components We'll Use for This RAG Chatbot
- Step 1: Install and Set Up LangChain
- Step 2: Install and Set Up Mistral AI Mistral Large
- Step 3: Install and Set Up IBM slate-125m-english-rtrvr-v2
- Step 4: Install and Set Up Faiss
- Step 5: Build a RAG Chatbot
- Optimization Tips
- RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
- What Have You Learned?
- Further Resources
- We'd Love to Hear What You Think!
Content
Vector Database at Scale
Zilliz Cloud is a fully-managed vector database built for scale, perfect for your RAG apps.
Try Zilliz Cloud for Free