Build RAG Chatbot with LangChain, Zilliz Cloud, Fireworks AI DeepSeek V3, and NVIDIA nv-embedqa-e5-v5
Introduction to RAG
Retrieval-Augmented Generation (RAG) is a game-changer for GenAI applications, especially in conversational AI. It combines the power of pre-trained large language models (LLMs) like OpenAI’s GPT with external knowledge sources stored in vector databases such as Milvus and Zilliz Cloud, allowing for more accurate, contextually relevant, and up-to-date response generation. A RAG pipeline usually consists of four basic components: a vector database, an embedding model, an LLM, and a framework.
Key Components We'll Use for This RAG Chatbot
This tutorial shows you how to build a simple RAG chatbot in Python using the following components:
- LangChain: An open-source framework that helps you orchestrate the interaction between LLMs, vector stores, embedding models, etc, making it easier to integrate a RAG pipeline.
- Zilliz Cloud: a fully managed vector database-as-a-service platform built on top of the open-source Milvus, designed to handle high-performance vector data processing at scale. It enables organizations to efficiently store, search, and analyze large volumes of unstructured data, such as text, images, or audio, by leveraging advanced vector search technology. It offers a free tier supporting up to 1 million vectors.
- Fireworks AI DeepSeek V3: This advanced AI model specializes in deep data exploration and analysis, providing powerful insights through its robust analytical capabilities. With strengths in pattern recognition and predictive analytics, it is ideal for sectors like finance and healthcare, where uncovering hidden trends and making data-driven decisions are crucial.
- NVIDIA nv-embedqa-e5-v5: This model combines advanced natural language processing with deep learning to perform efficient question answering. It excels in understanding context and providing accurate responses from embedded knowledge sources. Ideal for applications in customer support, chatbots, and interactive learning environments, it enhances user engagement through intuitive interactions.
By the end of this tutorial, you’ll have a functional chatbot capable of answering questions based on a custom knowledge base.
Note: Since we may use proprietary models in our tutorials, make sure you have the required API key beforehand.
Step 1: Install and Set Up LangChain
%pip install --quiet --upgrade langchain-text-splitters langchain-community langgraph
Step 2: Install and Set Up Fireworks AI DeepSeek V3
pip install -qU "langchain[fireworks]"
import getpass
import os
if not os.environ.get("FIREWORKS_API_KEY"):
os.environ["FIREWORKS_API_KEY"] = getpass.getpass("Enter API key for Fireworks AI: ")
from langchain.chat_models import init_chat_model
llm = init_chat_model("accounts/fireworks/models/deepseek-v3", model_provider="fireworks")
Step 3: Install and Set Up NVIDIA nv-embedqa-e5-v5
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os
if not os.environ.get("NVIDIA_API_KEY"):
os.environ["NVIDIA_API_KEY"] = getpass.getpass("Enter API key for NVIDIA: ")
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
embeddings = NVIDIAEmbeddings(model="nvidia/nv-embedqa-e5-v5")
Step 4: Install and Set Up Zilliz Cloud
pip install -qU langchain-milvus
from langchain_milvus import Zilliz
vector_store = Zilliz(
embedding_function=embeddings,
connection_args={
"uri": ZILLIZ_CLOUD_URI,
"token": ZILLIZ_CLOUD_TOKEN,
},
)
Step 5: Build a RAG Chatbot
Now that you’ve set up all components, let’s start to build a simple chatbot. We’ll use the Milvus introduction doc as a private knowledge base. You can replace it with your own dataset to customize your RAG chatbot.
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict
# Load and chunk contents of the blog
loader = WebBaseLoader(
web_paths=("https://milvus.io/docs/overview.md",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("doc-style doc-post-content")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
all_splits = text_splitter.split_documents(docs)
# Index chunks
_ = vector_store.add_documents(documents=all_splits)
# Define prompt for question-answering
prompt = hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
context: List[Document]
answer: str
# Define application steps
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
# Compile application and test
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
Test the Chatbot
Yeah! You've built your own chatbot. Let's ask the chatbot a question.
response = graph.invoke({"question": "What data types does Milvus support?"})
print(response["answer"])
Example Output
Milvus supports various data types including sparse vectors, binary vectors, JSON, and arrays. Additionally, it handles common numerical and character types, making it versatile for different data modeling needs. This allows users to manage unstructured or multi-modal data efficiently.
Optimization Tips
As you build your RAG system, optimization is key to ensuring peak performance and efficiency. While setting up the components is an essential first step, fine-tuning each one will help you create a solution that works even better and scales seamlessly. In this section, we’ll share some practical tips for optimizing all these components, giving you the edge to build smarter, faster, and more responsive RAG applications.
LangChain optimization tips
To optimize LangChain, focus on minimizing redundant operations in your workflow by structuring your chains and agents efficiently. Use caching to avoid repeated computations, speeding up your system, and experiment with modular design to ensure that components like models or databases can be easily swapped out. This will provide both flexibility and efficiency, allowing you to quickly scale your system without unnecessary delays or complications.
Zilliz Cloud optimization tips
Optimizing Zilliz Cloud for a RAG system involves efficient index selection, query tuning, and resource management. Use Hierarchical Navigable Small World (HNSW) indexing for high-speed, approximate nearest neighbor search while balancing recall and efficiency. Fine-tune ef_construction and M parameters based on your dataset size and query workload to optimize search accuracy and latency. Enable dynamic scaling to handle fluctuating workloads efficiently, ensuring smooth performance under varying query loads. Implement data partitioning to improve retrieval speed by grouping related data, reducing unnecessary comparisons. Regularly update and optimize embeddings to keep results relevant, particularly when dealing with evolving datasets. Use hybrid search techniques, such as combining vector and keyword search, to improve response quality. Monitor system metrics in Zilliz Cloud’s dashboard and adjust configurations accordingly to maintain low-latency, high-throughput performance.
Fireworks AI DeepSeek V3 optimization tips
DeepSeek V3 is optimized for advanced reasoning and response quality, making it a powerful choice for RAG applications requiring deep contextual understanding. Improve retrieval by implementing multi-stage ranking, ensuring only the most relevant documents are passed as context. Use structured prompts with clear delineation between retrieved content and user queries. Adjust temperature (0.1–0.2) for accuracy and fine-tune top-k/top-p for response control. Minimize latency with precomputed embeddings and caching for commonly queried data. Take advantage of Fireworks AI’s API optimizations to batch multiple requests, reducing processing overhead. Implement dynamic scaling strategies for high-demand scenarios, ensuring model performance remains consistent under load. If used in a multi-tiered architecture, deploy DeepSeek V3 for high-value queries while leveraging smaller models for basic lookups.
NVIDIA nv-embedqa-e5-v5 optimization tips
To optimize the NVIDIA nv-embedqa-e5-v5 in a Retrieval-Augmented Generation (RAG) setup, first ensure that your model is correctly fine-tuned with a diverse training dataset to enhance retrieval accuracy. Utilize mixed precision training to boost computational efficiency and reduce memory usage. Implement batching for queries and responses to leverage parallel processing capabilities. Regularly monitor and adjust the learning rate and other hyperparameters for optimal training performance. Finally, incorporate caching mechanisms for frequently accessed embeddings and results to significantly speed up retrieval times.
By implementing these tips across your components, you'll be able to enhance the performance and functionality of your RAG system, ensuring it’s optimized for both speed and accuracy. Keep testing, iterating, and refining your setup to stay ahead in the ever-evolving world of AI development.
RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
Estimating the cost of a Retrieval-Augmented Generation (RAG) pipeline involves analyzing expenses across vector storage, compute resources, and API usage. Key cost drivers include vector database queries, embedding generation, and LLM inference.
RAG Cost Calculator is a free tool that quickly estimates the cost of building a RAG pipeline, including chunking, embedding, vector storage/search, and LLM generation. It also helps you identify cost-saving opportunities and achieve up to 10x cost reduction on vector databases with the serverless option.
Calculate your RAG cost
What Have You Learned?
You’ve just unlocked the power to build a fully functional RAG system from scratch! By combining LangChain’s flexible orchestration framework with Zilliz Cloud’s lightning-fast vector database, Fireworks AI’s DeepSeek V3 for intelligent text generation, and NVIDIA’s nv-embedqa-e5-v5 embedding model for semantic understanding, you’ve learned how to transform raw data into a dynamic knowledge engine. The tutorial showed you how LangChain acts as the glue, seamlessly connecting each component: chunking and preprocessing data, generating dense embeddings with NVIDIA’s model, storing and retrieving context with Zilliz Cloud’s optimized vector search, and feeding that context to DeepSeek V3 to craft precise, context-aware answers. You also discovered pro tips like tuning chunk sizes for accuracy, adjusting retrieval thresholds for relevance, and leveraging Zilliz Cloud’s auto-scaling to balance cost and performance—plus that handy free RAG cost calculator to keep your projects budget-friendly!
This isn’t just about following steps—it’s about empowering you to create smarter, faster, and more scalable AI applications. Imagine the possibilities: chatbots that understand nuance, research tools that surface insights in seconds, or custom solutions tailored to your industry. With these tools in your arsenal, you’re ready to experiment, optimize, and push boundaries. So go ahead—tweak those parameters, test new datasets, and watch your RAG system evolve. The future of AI is iterative, collaborative, and wildly creative. Your journey starts now. Build something amazing! 🚀
Further Resources
🌟 In addition to this RAG tutorial, unleash your full potential with these incredible resources to level up your RAG skills.
- How to Build a Multimodal RAG | Documentation
- How to Enhance the Performance of Your RAG Pipeline
- Graph RAG with Milvus | Documentation
- How to Evaluate RAG Applications - Zilliz Learn
- Generative AI Resource Hub | Zilliz
We'd Love to Hear What You Think!
We’d love to hear your thoughts! 🌟 Leave your questions or comments below or join our vibrant Milvus Discord community to share your experiences, ask questions, or connect with thousands of AI enthusiasts. Your journey matters to us!
If you like this tutorial, show your support by giving our Milvus GitHub repo a star ⭐—it means the world to us and inspires us to keep creating! 💖
- Introduction to RAG
- Key Components We'll Use for This RAG Chatbot
- Step 1: Install and Set Up LangChain
- Step 2: Install and Set Up Fireworks AI DeepSeek V3
- Step 3: Install and Set Up NVIDIA nv-embedqa-e5-v5
- Step 4: Install and Set Up Zilliz Cloud
- Step 5: Build a RAG Chatbot
- Optimization Tips
- RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
- What Have You Learned?
- Further Resources
- We'd Love to Hear What You Think!
Content
Vector Database at Scale
Zilliz Cloud is a fully-managed vector database built for scale, perfect for your RAG apps.
Try Zilliz Cloud for Free