Build RAG Chatbot with LangChain, LangChain vector store, Google Vertex AI Gemini 2.0 Pro, and Ollama bge-m3
Introduction to RAG
Retrieval-Augmented Generation (RAG) is a game-changer for GenAI applications, especially in conversational AI. It combines the power of pre-trained large language models (LLMs) like OpenAI’s GPT with external knowledge sources stored in vector databases such as Milvus and Zilliz Cloud, allowing for more accurate, contextually relevant, and up-to-date response generation. A RAG pipeline usually consists of four basic components: a vector database, an embedding model, an LLM, and a framework.
Key Components We'll Use for This RAG Chatbot
This tutorial shows you how to build a simple RAG chatbot in Python using the following components:
- LangChain: An open-source framework that helps you orchestrate the interaction between LLMs, vector stores, embedding models, etc, making it easier to integrate a RAG pipeline.
- LangChain in-memory vector store: an in-memory, ephemeral vector store that stores embeddings in-memory and does an exact, linear search for the most similar embeddings. The default similarity metric is cosine similarity, but can be changed to any of the similarity metrics supported by ml-distance. It is intended for demos and does not yet support ids or deletion. (If you want a much more scalable solution for your apps or even enterprise projects, we recommend using Zilliz Cloud, which is a fully managed vector database service built on the open-source Milvusand offers a free tier supporting up to 1 million vectors.)
- Google Vertex AI Gemini 2.0 Pro: This advanced AI model integrates robust machine learning capabilities for diverse applications, from natural language processing to image analysis. Its strengths lie in multi-modal understanding and rapid deployment, making it ideal for enterprises seeking to leverage AI for enhanced automation and decision-making across various sectors.
- Ollama bge-m3: Ollama bge-m3 is a powerful language model designed for sophisticated natural language understanding and generation tasks. It excels in providing contextual responses, making it suitable for applications such as chatbots, content creation, and digital assistants, where conversational fluency and coherence are crucial.
By the end of this tutorial, you’ll have a functional chatbot capable of answering questions based on a custom knowledge base.
Note: Since we may use proprietary models in our tutorials, make sure you have the required API key beforehand.
Step 1: Install and Set Up LangChain
%pip install --quiet --upgrade langchain-text-splitters langchain-community langgraph
Step 2: Install and Set Up Google Vertex AI Gemini 2.0 Pro
pip install -qU "langchain[google-vertexai]"
# Ensure your VertexAI credentials are configured
from langchain.chat_models import init_chat_model
llm = init_chat_model("gemini-2.0-pro-exp-02-05", model_provider="google_vertexai")
Step 3: Install and Set Up Ollama bge-m3
pip install -qU langchain-ollama
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="bge-m3")
Step 4: Install and Set Up LangChain vector store
pip install -qU langchain-core
from langchain_core.vectorstores import InMemoryVectorStore
vector_store = InMemoryVectorStore(embeddings)
Step 5: Build a RAG Chatbot
Now that you’ve set up all components, let’s start to build a simple chatbot. We’ll use the Milvus introduction doc as a private knowledge base. You can replace it with your own dataset to customize your RAG chatbot.
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict
# Load and chunk contents of the blog
loader = WebBaseLoader(
web_paths=("https://milvus.io/docs/overview.md",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("doc-style doc-post-content")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
all_splits = text_splitter.split_documents(docs)
# Index chunks
_ = vector_store.add_documents(documents=all_splits)
# Define prompt for question-answering
prompt = hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
context: List[Document]
answer: str
# Define application steps
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
# Compile application and test
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
Test the Chatbot
Yeah! You've built your own chatbot. Let's ask the chatbot a question.
response = graph.invoke({"question": "What data types does Milvus support?"})
print(response["answer"])
Example Output
Milvus supports various data types including sparse vectors, binary vectors, JSON, and arrays. Additionally, it handles common numerical and character types, making it versatile for different data modeling needs. This allows users to manage unstructured or multi-modal data efficiently.
Optimization Tips
As you build your RAG system, optimization is key to ensuring peak performance and efficiency. While setting up the components is an essential first step, fine-tuning each one will help you create a solution that works even better and scales seamlessly. In this section, we’ll share some practical tips for optimizing all these components, giving you the edge to build smarter, faster, and more responsive RAG applications.
LangChain optimization tips
To optimize LangChain, focus on minimizing redundant operations in your workflow by structuring your chains and agents efficiently. Use caching to avoid repeated computations, speeding up your system, and experiment with modular design to ensure that components like models or databases can be easily swapped out. This will provide both flexibility and efficiency, allowing you to quickly scale your system without unnecessary delays or complications.
LangChain in-memory vector store optimization tips
LangChain in-memory vector store is just an ephemeral vector store that stores embeddings in-memory and does an exact, linear search for the most similar embeddings. It has very limited features and is only intended for demos. If you plan to build a functional or even production-level solution, we recommend using Zilliz Cloud, which is a fully managed vector database service built on the open-source Milvus and offers a free tier supporting up to 1 million vectors.)
Google Vertex AI Gemini 2.0 Pro optimization tips
Gemini 2.0 Pro is designed for advanced reasoning, making it ideal for RAG applications requiring deep contextual understanding. Optimize retrieval by using multi-stage ranking techniques to ensure only the most relevant documents are included in context. Keep prompts structured and logical, with key information presented upfront. Adjust temperature (0.1–0.3) for precise control over response style and accuracy. Use Google’s caching and batching mechanisms to improve efficiency and reduce API costs. Streaming responses can enhance real-time applications by reducing perceived latency. If deploying multiple models, reserve Gemini 2.0 Pro for in-depth analysis while using smaller models for basic retrieval and summarization.
Ollama bge-m3 optimization tips
To optimize the Ollama bge-m3 component in a Retrieval-Augmented Generation setup, consider implementing a well-defined caching strategy for frequently accessed data, which will significantly reduce response times and improve overall latency. Additionally, fine-tune your query relevance by adjusting the parameters for the retrieval model to maximize quality, leveraging embeddings for context enrichment. Batch processing of queries can further improve throughput. Lastly, monitor performance metrics continuously to identify bottlenecks and make data-driven adjustments, ensuring robust scalability and responsiveness in production environments.
By implementing these tips across your components, you'll be able to enhance the performance and functionality of your RAG system, ensuring it’s optimized for both speed and accuracy. Keep testing, iterating, and refining your setup to stay ahead in the ever-evolving world of AI development.
RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
Estimating the cost of a Retrieval-Augmented Generation (RAG) pipeline involves analyzing expenses across vector storage, compute resources, and API usage. Key cost drivers include vector database queries, embedding generation, and LLM inference.
RAG Cost Calculator is a free tool that quickly estimates the cost of building a RAG pipeline, including chunking, embedding, vector storage/search, and LLM generation. It also helps you identify cost-saving opportunities and achieve up to 10x cost reduction on vector databases with the serverless option.
Calculate your RAG cost
What Have You Learned?
By diving into this tutorial, you’ve learned how to weave together cutting-edge tools to create a RAG (Retrieval-Augmented Generation) system that’s both powerful and adaptable! You started by leveraging LangChain as the backbone framework to orchestrate your pipeline, connecting the dots between data ingestion, processing, and generation. With LangChain’s vector store, you transformed unstructured text into searchable embeddings, enabling lightning-fast semantic searches. Then, you tapped into the Ollama bge-m3 embedding model to encode your data into rich, context-aware vectors, ensuring your system understands nuanced queries. Finally, Google Vertex AI Gemini 2.0 Pro stepped in as the LLM powerhouse, synthesizing retrieved information into coherent, human-like responses—blending factual accuracy with creativity. Together, these components form a seamless RAG pipeline that bridges knowledge retrieval with generative intelligence, perfect for chatbots, research tools, or personalized assistants!
But you didn’t stop there! The tutorial also equipped you with optimization tricks, like fine-tuning chunking strategies and balancing retrieval accuracy with computational cost. You even explored tools like the free RAG cost calculator to estimate expenses and scale responsibly. Now, imagine what you can build next—custom knowledge bases, AI tutors, or enterprise-grade search engines. The skills you’ve gained aren’t just theoretical; they’re a launchpad for real-world innovation. So, fire up your IDE, experiment with different datasets, and tweak those parameters! The future of intelligent applications is yours to shape. Go build something amazing, share your wins, and keep pushing the boundaries of what RAG can do. Your journey has just begun—let’s make it legendary! 🚀
Further Resources
🌟 In addition to this RAG tutorial, unleash your full potential with these incredible resources to level up your RAG skills.
- How to Build a Multimodal RAG | Documentation
- How to Enhance the Performance of Your RAG Pipeline
- Graph RAG with Milvus | Documentation
- How to Evaluate RAG Applications - Zilliz Learn
- Generative AI Resource Hub | Zilliz
We'd Love to Hear What You Think!
We’d love to hear your thoughts! 🌟 Leave your questions or comments below or join our vibrant Milvus Discord community to share your experiences, ask questions, or connect with thousands of AI enthusiasts. Your journey matters to us!
If you like this tutorial, show your support by giving our Milvus GitHub repo a star ⭐—it means the world to us and inspires us to keep creating! 💖
- Introduction to RAG
- Key Components We'll Use for This RAG Chatbot
- Step 1: Install and Set Up LangChain
- Step 2: Install and Set Up Google Vertex AI Gemini 2.0 Pro
- Step 3: Install and Set Up Ollama bge-m3
- Step 4: Install and Set Up LangChain vector store
- Step 5: Build a RAG Chatbot
- Optimization Tips
- RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
- What Have You Learned?
- Further Resources
- We'd Love to Hear What You Think!
Content
Vector Database at Scale
Zilliz Cloud is a fully-managed vector database built for scale, perfect for your RAG apps.
Try Zilliz Cloud for Free