Build RAG Chatbot with LangChain, LangChain vector store, Google Vertex AI Claude 3 Haiku, and IBM all-minilm-l6-v2
Introduction to RAG
Retrieval-Augmented Generation (RAG) is a game-changer for GenAI applications, especially in conversational AI. It combines the power of pre-trained large language models (LLMs) like OpenAI’s GPT with external knowledge sources stored in vector databases such as Milvus and Zilliz Cloud, allowing for more accurate, contextually relevant, and up-to-date response generation. A RAG pipeline usually consists of four basic components: a vector database, an embedding model, an LLM, and a framework.
Key Components We'll Use for This RAG Chatbot
This tutorial shows you how to build a simple RAG chatbot in Python using the following components:
- LangChain: An open-source framework that helps you orchestrate the interaction between LLMs, vector stores, embedding models, etc, making it easier to integrate a RAG pipeline.
- LangChain in-memory vector store: an in-memory, ephemeral vector store that stores embeddings in-memory and does an exact, linear search for the most similar embeddings. The default similarity metric is cosine similarity, but can be changed to any of the similarity metrics supported by ml-distance. It is intended for demos and does not yet support ids or deletion. (If you want a much more scalable solution for your apps or even enterprise projects, we recommend using Zilliz Cloud, which is a fully managed vector database service built on the open-source Milvusand offers a free tier supporting up to 1 million vectors.)
- Google Vertex AI Claude 3 Haiku: A versatile model within Google’s Vertex AI ecosystem, it is designed for seamless integration and enhanced generative capabilities. It excels in natural language processing tasks, such as text generation, summarization, and conversational AI. Ideal for businesses seeking to leverage AI for robust, scalable applications in various domains.
- IBM all-minilm-l6-v2: This model is a compact, efficient transformer-based language representation model optimized for tasks requiring fast inferencing. It excels in natural language understanding tasks such as sentiment analysis and information retrieval, making it ideal for applications in chatbots, search engines, and data annotation.
By the end of this tutorial, you’ll have a functional chatbot capable of answering questions based on a custom knowledge base.
Note: Since we may use proprietary models in our tutorials, make sure you have the required API key beforehand.
Step 1: Install and Set Up LangChain
%pip install --quiet --upgrade langchain-text-splitters langchain-community langgraph
Step 2: Install and Set Up Google Vertex AI Claude 3 Haiku
pip install -qU "langchain[google-vertexai]"
# Ensure your VertexAI credentials are configured
from langchain.chat_models import init_chat_model
llm = init_chat_model("claude-3-haiku@20240307", model_provider="google_vertexai")
Step 3: Install and Set Up IBM all-minilm-l6-v2
pip install -qU langchain-ibm
import getpass
import os
if not os.environ.get("WATSONX_APIKEY"):
os.environ["WATSONX_APIKEY"] = getpass.getpass("Enter API key for IBM watsonx: ")
from langchain_ibm import WatsonxEmbeddings
embeddings = WatsonxEmbeddings(
model_id="sentence-transformers/all-minilm-l6-v2",
url="https://us-south.ml.cloud.ibm.com",
project_id="<WATSONX PROJECT_ID>",
)
Step 4: Install and Set Up LangChain vector store
pip install -qU langchain-core
from langchain_core.vectorstores import InMemoryVectorStore
vector_store = InMemoryVectorStore(embeddings)
Step 5: Build a RAG Chatbot
Now that you’ve set up all components, let’s start to build a simple chatbot. We’ll use the Milvus introduction doc as a private knowledge base. You can replace it with your own dataset to customize your RAG chatbot.
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict
# Load and chunk contents of the blog
loader = WebBaseLoader(
web_paths=("https://milvus.io/docs/overview.md",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("doc-style doc-post-content")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
all_splits = text_splitter.split_documents(docs)
# Index chunks
_ = vector_store.add_documents(documents=all_splits)
# Define prompt for question-answering
prompt = hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
context: List[Document]
answer: str
# Define application steps
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
# Compile application and test
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
Test the Chatbot
Yeah! You've built your own chatbot. Let's ask the chatbot a question.
response = graph.invoke({"question": "What data types does Milvus support?"})
print(response["answer"])
Example Output
Milvus supports various data types including sparse vectors, binary vectors, JSON, and arrays. Additionally, it handles common numerical and character types, making it versatile for different data modeling needs. This allows users to manage unstructured or multi-modal data efficiently.
Optimization Tips
As you build your RAG system, optimization is key to ensuring peak performance and efficiency. While setting up the components is an essential first step, fine-tuning each one will help you create a solution that works even better and scales seamlessly. In this section, we’ll share some practical tips for optimizing all these components, giving you the edge to build smarter, faster, and more responsive RAG applications.
LangChain optimization tips
To optimize LangChain, focus on minimizing redundant operations in your workflow by structuring your chains and agents efficiently. Use caching to avoid repeated computations, speeding up your system, and experiment with modular design to ensure that components like models or databases can be easily swapped out. This will provide both flexibility and efficiency, allowing you to quickly scale your system without unnecessary delays or complications.
LangChain in-memory vector store optimization tips
LangChain in-memory vector store is just an ephemeral vector store that stores embeddings in-memory and does an exact, linear search for the most similar embeddings. It has very limited features and is only intended for demos. If you plan to build a functional or even production-level solution, we recommend using Zilliz Cloud, which is a fully managed vector database service built on the open-source Milvus and offers a free tier supporting up to 1 million vectors.)
Google Vertex AI Claude 3 Haiku optimization tips
Claude 3 Haiku on Google Vertex AI is designed for low-latency RAG applications requiring fast retrieval and generation. Optimize retrieval by using efficient vector search techniques to minimize irrelevant data in the context. Keep prompts short and structured to maximize clarity while reducing token usage. Set temperature between 0.1 and 0.3 for fact-based queries to maintain accuracy. Use Google Cloud’s auto-scaling and caching features to handle peak loads effectively. If deploying in a multi-model setup, reserve Haiku for fast, high-volume tasks while offloading complex reasoning to larger models. Implement response streaming for real-time applications to reduce latency and improve interactivity.
IBM all-minilm-l6-v2 optimization tips
To optimize the performance of IBM all-minilm-l6-v2 in a Retrieval-Augmented Generation (RAG) setup, consider implementing streamlined query preprocessing to remove stop words and normalize text, ensuring that input queries are concise and relevant. Layering caching strategies on frequently retrieved results can significantly reduce latency, while fine-tuning the model with domain-specific data enhances relevance and accuracy. Additionally, experiment with batch processing during inference to leverage parallelization, and monitor and adjust hyperparameters like learning rates and maximum token counts to refine model responses. Lastly, ensure that your retrieval system is seamlessly integrated with the generation process to maintain context and coherence in generated outputs.
By implementing these tips across your components, you'll be able to enhance the performance and functionality of your RAG system, ensuring it’s optimized for both speed and accuracy. Keep testing, iterating, and refining your setup to stay ahead in the ever-evolving world of AI development.
RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
Estimating the cost of a Retrieval-Augmented Generation (RAG) pipeline involves analyzing expenses across vector storage, compute resources, and API usage. Key cost drivers include vector database queries, embedding generation, and LLM inference.
RAG Cost Calculator is a free tool that quickly estimates the cost of building a RAG pipeline, including chunking, embedding, vector storage/search, and LLM generation. It also helps you identify cost-saving opportunities and achieve up to 10x cost reduction on vector databases with the serverless option.
Calculate your RAG cost
What Have You Learned?
By diving into this tutorial, you’ve unlocked the power to build your very own RAG system from the ground up! You learned how LangChain acts as the glue that binds everything together—orchestrating workflows, handling data flow, and making it seamless to connect your vector database, embedding model, and LLM. The IBM all-minilm-l6-v2 embedding model became your secret weapon for transforming raw text into rich numerical representations, capturing the essence of your data so the system can understand context and relationships. Then, by pairing these embeddings with LangChain’s vector store, you mastered how to efficiently store, index, and retrieve the most relevant information for any query. And let’s not forget the star of the show: Google Vertex AI’s Claude 3 Haiku, which took those retrieved snippets and spun them into coherent, context-aware responses that feel almost human. Along the way, you discovered practical tips for optimizing performance, like tweaking chunk sizes for embeddings or balancing speed with accuracy, and even got a glimpse of how to use the free RAG cost calculator to keep your projects budget-friendly.
Now that you’ve seen how these pieces click into place like a well-designed puzzle, the real fun begins! You’re not just following steps—you’re equipped to experiment, iterate, and tailor RAG systems to solve real-world problems. Maybe you’ll fine-tune embeddings for niche domains, layer in hybrid search strategies, or build a chatbot that feels like magic. The tools are yours to wield, and the possibilities are endless. So go ahead—fire up your IDE, play with different models, and see how far you can push this technology. Remember, every tweak you make and every experiment you run brings you closer to creating something truly groundbreaking. The future of intelligent applications is in your hands. Let’s build it! 🚀
Further Resources
🌟 In addition to this RAG tutorial, unleash your full potential with these incredible resources to level up your RAG skills.
- How to Build a Multimodal RAG | Documentation
- How to Enhance the Performance of Your RAG Pipeline
- Graph RAG with Milvus | Documentation
- How to Evaluate RAG Applications - Zilliz Learn
- Generative AI Resource Hub | Zilliz
We'd Love to Hear What You Think!
We’d love to hear your thoughts! 🌟 Leave your questions or comments below or join our vibrant Milvus Discord community to share your experiences, ask questions, or connect with thousands of AI enthusiasts. Your journey matters to us!
If you like this tutorial, show your support by giving our Milvus GitHub repo a star ⭐—it means the world to us and inspires us to keep creating! 💖
- Introduction to RAG
- Key Components We'll Use for This RAG Chatbot
- Step 1: Install and Set Up LangChain
- Step 2: Install and Set Up Google Vertex AI Claude 3 Haiku
- Step 3: Install and Set Up IBM all-minilm-l6-v2
- Step 4: Install and Set Up LangChain vector store
- Step 5: Build a RAG Chatbot
- Optimization Tips
- RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
- What Have You Learned?
- Further Resources
- We'd Love to Hear What You Think!
Content
Vector Database at Scale
Zilliz Cloud is a fully-managed vector database built for scale, perfect for your RAG apps.
Try Zilliz Cloud for Free