Build RAG Chatbot with LangChain, LangChain vector store, Azure GPT-4o mini, and IBM all-minilm-l6-v2
Introduction to RAG
Retrieval-Augmented Generation (RAG) is a game-changer for GenAI applications, especially in conversational AI. It combines the power of pre-trained large language models (LLMs) like OpenAI’s GPT with external knowledge sources stored in vector databases such as Milvus and Zilliz Cloud, allowing for more accurate, contextually relevant, and up-to-date response generation. A RAG pipeline usually consists of four basic components: a vector database, an embedding model, an LLM, and a framework.
Key Components We'll Use for This RAG Chatbot
This tutorial shows you how to build a simple RAG chatbot in Python using the following components:
- LangChain: An open-source framework that helps you orchestrate the interaction between LLMs, vector stores, embedding models, etc, making it easier to integrate a RAG pipeline.
- LangChain in-memory vector store: an in-memory, ephemeral vector store that stores embeddings in-memory and does an exact, linear search for the most similar embeddings. The default similarity metric is cosine similarity, but can be changed to any of the similarity metrics supported by ml-distance. It is intended for demos and does not yet support ids or deletion. (If you want a much more scalable solution for your apps or even enterprise projects, we recommend using Zilliz Cloud, which is a fully managed vector database service built on the open-source Milvusand offers a free tier supporting up to 1 million vectors.)
- Azure GPT-4o Mini: A compact version of the powerful GPT-4 architecture, designed for efficient processing in resource-constrained environments. It delivers robust performance in natural language understanding and generation, making it suitable for chatbots, customer support, and content creation. Ideal for applications where speed and scalability are essential without compromising on quality.
- IBM all-minilm-l6-v2: This model is a compact, efficient transformer-based language representation model optimized for tasks requiring fast inferencing. It excels in natural language understanding tasks such as sentiment analysis and information retrieval, making it ideal for applications in chatbots, search engines, and data annotation.
By the end of this tutorial, you’ll have a functional chatbot capable of answering questions based on a custom knowledge base.
Note: Since we may use proprietary models in our tutorials, make sure you have the required API key beforehand.
Step 1: Install and Set Up LangChain
%pip install --quiet --upgrade langchain-text-splitters langchain-community langgraph
Step 2: Install and Set Up Azure GPT-4o mini
pip install -qU "langchain[openai]"
import getpass
import os
if not os.environ.get("AZURE_OPENAI_API_KEY"):
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass("Enter API key for Azure: ")
from langchain_openai import AzureChatOpenAI
llm = AzureChatOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
Step 3: Install and Set Up IBM all-minilm-l6-v2
pip install -qU langchain-ibm
import getpass
import os
if not os.environ.get("WATSONX_APIKEY"):
os.environ["WATSONX_APIKEY"] = getpass.getpass("Enter API key for IBM watsonx: ")
from langchain_ibm import WatsonxEmbeddings
embeddings = WatsonxEmbeddings(
model_id="sentence-transformers/all-minilm-l6-v2",
url="https://us-south.ml.cloud.ibm.com",
project_id="<WATSONX PROJECT_ID>",
)
Step 4: Install and Set Up LangChain vector store
pip install -qU langchain-core
from langchain_core.vectorstores import InMemoryVectorStore
vector_store = InMemoryVectorStore(embeddings)
Step 5: Build a RAG Chatbot
Now that you’ve set up all components, let’s start to build a simple chatbot. We’ll use the Milvus introduction doc as a private knowledge base. You can replace it with your own dataset to customize your RAG chatbot.
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict
# Load and chunk contents of the blog
loader = WebBaseLoader(
web_paths=("https://milvus.io/docs/overview.md",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("doc-style doc-post-content")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
all_splits = text_splitter.split_documents(docs)
# Index chunks
_ = vector_store.add_documents(documents=all_splits)
# Define prompt for question-answering
prompt = hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
context: List[Document]
answer: str
# Define application steps
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
# Compile application and test
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
Test the Chatbot
Yeah! You've built your own chatbot. Let's ask the chatbot a question.
response = graph.invoke({"question": "What data types does Milvus support?"})
print(response["answer"])
Example Output
Milvus supports various data types including sparse vectors, binary vectors, JSON, and arrays. Additionally, it handles common numerical and character types, making it versatile for different data modeling needs. This allows users to manage unstructured or multi-modal data efficiently.
Optimization Tips
As you build your RAG system, optimization is key to ensuring peak performance and efficiency. While setting up the components is an essential first step, fine-tuning each one will help you create a solution that works even better and scales seamlessly. In this section, we’ll share some practical tips for optimizing all these components, giving you the edge to build smarter, faster, and more responsive RAG applications.
LangChain optimization tips
To optimize LangChain, focus on minimizing redundant operations in your workflow by structuring your chains and agents efficiently. Use caching to avoid repeated computations, speeding up your system, and experiment with modular design to ensure that components like models or databases can be easily swapped out. This will provide both flexibility and efficiency, allowing you to quickly scale your system without unnecessary delays or complications.
LangChain in-memory vector store optimization tips
LangChain in-memory vector store is just an ephemeral vector store that stores embeddings in-memory and does an exact, linear search for the most similar embeddings. It has very limited features and is only intended for demos. If you plan to build a functional or even production-level solution, we recommend using Zilliz Cloud, which is a fully managed vector database service built on the open-source Milvus and offers a free tier supporting up to 1 million vectors.)
Azure GPT-4o mini optimization tips
Azure GPT-4o mini is a cost-efficient, low-latency model optimized for fast RAG applications. Improve retrieval by ensuring only the top-ranked, most relevant documents are included in the context to minimize unnecessary token consumption. Structure prompts with bullet points or numbered lists for clarity. Adjust temperature settings between 0.1 and 0.2 for precision, modifying top-p as needed for response diversity. To enhance performance, batch multiple API requests and implement caching for frequently queried information. Azure’s infrastructure allows for auto-scaling, so configure dynamic scaling to handle varying workloads efficiently. Stream responses for improved real-time performance, ensuring fast and interactive user experiences. If used in a pipeline, assign GPT-4o mini to preliminary filtering or summarization while reserving larger models for complex tasks.
IBM all-minilm-l6-v2 optimization tips
To optimize the performance of IBM all-minilm-l6-v2 in a Retrieval-Augmented Generation (RAG) setup, consider implementing streamlined query preprocessing to remove stop words and normalize text, ensuring that input queries are concise and relevant. Layering caching strategies on frequently retrieved results can significantly reduce latency, while fine-tuning the model with domain-specific data enhances relevance and accuracy. Additionally, experiment with batch processing during inference to leverage parallelization, and monitor and adjust hyperparameters like learning rates and maximum token counts to refine model responses. Lastly, ensure that your retrieval system is seamlessly integrated with the generation process to maintain context and coherence in generated outputs.
By implementing these tips across your components, you'll be able to enhance the performance and functionality of your RAG system, ensuring it’s optimized for both speed and accuracy. Keep testing, iterating, and refining your setup to stay ahead in the ever-evolving world of AI development.
RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
Estimating the cost of a Retrieval-Augmented Generation (RAG) pipeline involves analyzing expenses across vector storage, compute resources, and API usage. Key cost drivers include vector database queries, embedding generation, and LLM inference.
RAG Cost Calculator is a free tool that quickly estimates the cost of building a RAG pipeline, including chunking, embedding, vector storage/search, and LLM generation. It also helps you identify cost-saving opportunities and achieve up to 10x cost reduction on vector databases with the serverless option.
Calculate your RAG cost
What Have You Learned?
By diving into this tutorial, you’ve unlocked the magic of building a RAG system from the ground up! You learned how LangChain acts as the backbone, seamlessly stitching together every component into a powerful pipeline. The LangChain vector store became your go-to tool for storing and retrieving data efficiently, transforming raw information into actionable insights. With IBM’s all-minilm-l6-v2 embedding model, you saw how text gets converted into meaningful numerical representations, making it possible for the system to “understand” context and relationships. Then came Azure’s GPT-4o mini—the brain that generates human-like responses, turning retrieved data into coherent, context-aware answers. Together, these pieces form a dynamic loop: retrieve, understand, generate, repeat! You also picked up pro tips for optimizing performance, like balancing chunk sizes and tweaking retrieval thresholds, and even discovered a free RAG cost calculator to help you budget deployments smartly.
Now you’re equipped to build intelligent applications that don’t just answer questions but understand them. Imagine chatbots that feel almost human, research tools that summarize complex papers in seconds, or customer support systems that resolve issues with precision. The tools are in your hands—LangChain’s flexibility, the vector store’s speed, cutting-edge embeddings, and GPT-4’s brilliance. Don’t stop here! Experiment with different datasets, fine-tune your models, and explore how small tweaks can lead to big improvements. The world of AI is your playground, and every line of code you write pushes the boundaries of what’s possible. So go ahead—build something bold, optimize fearlessly, and let your creativity shape the future of intelligent systems. The next breakthrough? It starts with you. 🚀
Further Resources
🌟 In addition to this RAG tutorial, unleash your full potential with these incredible resources to level up your RAG skills.
- How to Build a Multimodal RAG | Documentation
- How to Enhance the Performance of Your RAG Pipeline
- Graph RAG with Milvus | Documentation
- How to Evaluate RAG Applications - Zilliz Learn
- Generative AI Resource Hub | Zilliz
We'd Love to Hear What You Think!
We’d love to hear your thoughts! 🌟 Leave your questions or comments below or join our vibrant Milvus Discord community to share your experiences, ask questions, or connect with thousands of AI enthusiasts. Your journey matters to us!
If you like this tutorial, show your support by giving our Milvus GitHub repo a star ⭐—it means the world to us and inspires us to keep creating! 💖
- Introduction to RAG
- Key Components We'll Use for This RAG Chatbot
- Step 1: Install and Set Up LangChain
- Step 2: Install and Set Up Azure GPT-4o mini
- Step 3: Install and Set Up IBM all-minilm-l6-v2
- Step 4: Install and Set Up LangChain vector store
- Step 5: Build a RAG Chatbot
- Optimization Tips
- RAG Cost Calculator: A Free Tool to Calculate Your Cost in Seconds
- What Have You Learned?
- Further Resources
- We'd Love to Hear What You Think!
Content
Vector Database at Scale
Zilliz Cloud is a fully-managed vector database built for scale, perfect for your RAG apps.
Try Zilliz Cloud for Free