Optical Character Recognition (OCR) in computer vision is a technology used to convert different types of documents—such as scanned paper documents, PDFs, or images of typed or handwritten text—into editable and searchable data. OCR works by analyzing the structure of the text in the image, segmenting it into individual characters or words, and then using machine learning algorithms to match these segments with the corresponding characters in a predefined character set. OCR is commonly used in document digitization, invoice processing, and automated data entry. Advanced OCR systems, such as Tesseract and Adobe Acrobat, utilize techniques like deep learning to improve the accuracy of text recognition, even in complex or noisy images. OCR is also capable of recognizing different fonts, handwriting, and languages, making it a powerful tool for extracting information from a wide range of textual sources. The integration of OCR with other computer vision tasks, such as object detection or scene analysis, can further enhance its capabilities in real-world applications.
What is optical character recognition (OCR) in computer vision?

- Embedding 101
- Optimizing Your RAG Applications: Strategies and Methods
- Master Video AI
- Vector Database 101: Everything You Need to Know
- Accelerated Vector Search
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
What techniques are used to seamlessly blend virtual objects with real-world scenes?
To seamlessly blend virtual objects with real-world scenes, developers typically use a combination of techniques such as
What is the scope of computer vision in the future?
The future scope of computer vision is vast, with advancements expected in automation, healthcare, and augmented reality
How does deep learning handle time-series data?
Deep learning handles time-series data by using specialized architectures that can process sequences of data effectively