A Convolutional Neural Network (CNN) is a type of deep learning model that is primarily used in the field of machine learning for processing grid-like data such as images. CNNs are specifically designed to automatically and adaptively learn spatial hierarchies of features from input images, making them highly effective for tasks like image classification, object detection, and segmentation. The architecture of a CNN typically includes multiple layers, such as convolutional layers, which apply filters to the input image, pooling layers for down-sampling the feature maps, and fully connected layers for final decision-making. CNNs excel in recognizing patterns and structures in visual data, which is why they are the backbone of many computer vision applications. For example, in a self-driving car, CNNs can be used to identify obstacles, lanes, and traffic signs from camera images. Their ability to learn hierarchical features, starting from simple edges and progressing to more complex objects, makes CNNs very powerful for image-based tasks. With the use of large datasets and training on GPUs, CNNs are able to achieve remarkable performance on a variety of visual tasks, outperforming traditional image processing techniques.
What is CNN in machine learning?

- How to Pick the Right Vector Database for Your Use Case
- AI & Machine Learning
- Natural Language Processing (NLP) Basics
- Master Video AI
- Natural Language Processing (NLP) Advanced Guide
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
What are the benefits of vector search in full-text systems?
Vector search offers several benefits in full-text systems, primarily improving the relevance of search results, enhanci
How does Haystack support custom pipeline components for retrieval tasks?
Haystack supports custom pipeline components for retrieval tasks by allowing developers to easily integrate their own fu
How do I monitor and update a dataset during ongoing data collection?
Monitoring and updating a dataset during ongoing data collection is crucial for maintaining the accuracy and relevance o