A Convolutional Neural Network (CNN) is a type of deep learning model that is primarily used in the field of machine learning for processing grid-like data such as images. CNNs are specifically designed to automatically and adaptively learn spatial hierarchies of features from input images, making them highly effective for tasks like image classification, object detection, and segmentation. The architecture of a CNN typically includes multiple layers, such as convolutional layers, which apply filters to the input image, pooling layers for down-sampling the feature maps, and fully connected layers for final decision-making. CNNs excel in recognizing patterns and structures in visual data, which is why they are the backbone of many computer vision applications. For example, in a self-driving car, CNNs can be used to identify obstacles, lanes, and traffic signs from camera images. Their ability to learn hierarchical features, starting from simple edges and progressing to more complex objects, makes CNNs very powerful for image-based tasks. With the use of large datasets and training on GPUs, CNNs are able to achieve remarkable performance on a variety of visual tasks, outperforming traditional image processing techniques.
What is CNN in machine learning?

- Exploring Vector Database Use Cases
- AI & Machine Learning
- The Definitive Guide to Building RAG Apps with LlamaIndex
- Getting Started with Zilliz Cloud
- Vector Database 101: Everything You Need to Know
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How do you handle noisy data in recommendation models?
Handling noisy data in recommendation models is crucial for maintaining the quality and accuracy of the recommendations
How do you implement multi-region data sync?
Implementing multi-region data synchronization involves creating a system that ensures data consistency across different
How is data augmentation applied in natural language processing (NLP)?
Data augmentation in natural language processing (NLP) refers to techniques that aim to increase the size and diversity