Vector search handles large datasets by leveraging efficient indexing techniques and scalable storage systems. Unlike traditional relational databases, which perform linear scans over records, vector search relies on indexes optimized for high-dimensional data. These indexes, such as Hierarchical Navigable Small World (HNSW), Locality-Sensitive Hashing (LSH), and Product Quantization (PQ), organize vectors in ways that allow fast similarity searches even as the dataset grows. For example, HNSW organizes vectors in a graph structure, where similar vectors are placed closer together, enabling faster nearest neighbor search. Additionally, vector databases like Milvus or Zilliz Cloud support horizontal scaling, meaning they can distribute data across multiple servers. This allows them to handle massive datasets with billions of vectors efficiently. As the dataset grows, these systems dynamically scale their infrastructure, ensuring high availability and low-latency searches. In some cases, these systems can even leverage specialized hardware like GPUs to accelerate vector search operations, improving performance when handling large datasets. Thus, the combination of optimized indexing, horizontal scaling, and hardware acceleration makes vector search highly effective for large datasets.
How does vector search handle large datasets?

- Evaluating Your RAG Applications: Methods and Metrics
- Getting Started with Milvus
- The Definitive Guide to Building RAG Apps with LangChain
- Natural Language Processing (NLP) Advanced Guide
- Natural Language Processing (NLP) Basics
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How are guardrails applied in financial services using LLMs?
In financial services, guardrails play a critical role in ensuring that LLMs produce accurate, compliant, and secure con
How do organizations handle phased recovery in DR?
Organizations handle phased recovery in Disaster Recovery (DR) by implementing a structured approach that ensures critic
What are weights and biases in a neural network?
Weights and biases are core parameters in neural networks that determine how inputs are transformed into outputs. Weight