Selecting parameters for an ARIMA model involves determining p, d, and q through a combination of analysis and testing. Start by identifying if differencing (d) is necessary to make the time series stationary. Perform a unit root test like the Augmented Dickey-Fuller (ADF) test, and if the p-value is high, apply differencing until the series achieves stationarity. A non-stationary series can lead to inaccurate forecasts. Next, identify p (AR order) and q (MA order) by examining the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. For example, a PACF plot that cuts off after lag k suggests an AR(k) process, while an ACF plot that cuts off indicates an MA process. Trial-and-error can also help fine-tune these parameters. Tools like grid search and information criteria, such as AIC (Akaike Information Criterion) or BIC (Bayesian Information Criterion), assist in evaluating models with different parameters. Use these to balance model complexity and accuracy. Modern libraries like Python's statsmodels simplify parameter selection through built-in functions like auto_arima, which automatically tests combinations of p, d, and q.
How do you choose parameters for an ARIMA model?

- AI & Machine Learning
- Optimizing Your RAG Applications: Strategies and Methods
- Accelerated Vector Search
- Natural Language Processing (NLP) Basics
- GenAI Ecosystem
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How can we evaluate different embedding models to decide which yields the best retrieval performance for our specific RAG use case?
To evaluate embedding models for your RAG use case, start by defining clear evaluation criteria and testing protocols. F
How does collaborative filtering work?
Collaborative filtering is a recommendation technique commonly used in various applications like online retail, streamin
How does anomaly detection handle imbalanced datasets?
Anomaly detection is a technique used to identify unusual patterns or outliers in datasets, often applied in fields like