Selecting parameters for an ARIMA model involves determining p, d, and q through a combination of analysis and testing. Start by identifying if differencing (d) is necessary to make the time series stationary. Perform a unit root test like the Augmented Dickey-Fuller (ADF) test, and if the p-value is high, apply differencing until the series achieves stationarity. A non-stationary series can lead to inaccurate forecasts. Next, identify p (AR order) and q (MA order) by examining the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. For example, a PACF plot that cuts off after lag k suggests an AR(k) process, while an ACF plot that cuts off indicates an MA process. Trial-and-error can also help fine-tune these parameters. Tools like grid search and information criteria, such as AIC (Akaike Information Criterion) or BIC (Bayesian Information Criterion), assist in evaluating models with different parameters. Use these to balance model complexity and accuracy. Modern libraries like Python's statsmodels simplify parameter selection through built-in functions like auto_arima, which automatically tests combinations of p, d, and q.
How do you choose parameters for an ARIMA model?

- AI & Machine Learning
- Natural Language Processing (NLP) Basics
- GenAI Ecosystem
- Natural Language Processing (NLP) Advanced Guide
- Embedding 101
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How does DeepSeek's AI efficiency impact the AI industry?
DeepSeek's approach to AI efficiency significantly shapes the AI industry by enhancing performance and reducing resource
What challenges arise when training Vision-Language Models with diverse datasets?
When training Vision-Language Models with diverse datasets, several challenges can emerge that impact the effectiveness
What is the role of hardware accelerators in edge AI?
Hardware accelerators play a significant role in edge AI by enhancing computing performance and enabling real-time proce