The ARIMA model (AutoRegressive Integrated Moving Average) is a popular statistical method used for time series forecasting. It combines three key components: (1) AutoRegression (AR), which uses the relationship between an observation and its past values; (2) Differencing (I), which makes the time series stationary by removing trends or seasonality; and (3) Moving Average (MA), which models the relationship between an observation and a residual error from a moving average model. Together, these components allow ARIMA to capture both the patterns and randomness in a time series. For example, ARIMA is often used to forecast sales, stock prices, or energy usage based on historical data. The ARIMA model requires the time series to be stationary. A stationary series has constant mean, variance, and autocorrelation over time. If the series isn’t stationary, differencing is applied to transform it. ARIMA is defined by three parameters: (p, d, q), where p is the order of the AR part, d is the degree of differencing, and q is the order of the MA part. Selecting these parameters correctly is critical to creating an accurate model. ARIMA is versatile but assumes linear relationships in data. For more complex datasets, extensions like SARIMA (Seasonal ARIMA) handle seasonality, while ARIMA combined with machine learning can address nonlinear patterns. This adaptability makes ARIMA widely used in many industries.
What is the ARIMA model in time series analysis?

- Master Video AI
- AI & Machine Learning
- Information Retrieval 101
- Large Language Models (LLMs) 101
- Advanced Techniques in Vector Database Management
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
What are qubits, and how do they differ from classical bits?
Qubits, or quantum bits, are the fundamental units of information in quantum computing, functioning similarly to classic
What is the difference between TPC-C and TPC-H?
TPC-C and TPC-H are two different benchmark standards defined by the Transaction Processing Performance Council (TPC) to
How do query logs improve full-text search?
Query logs improve full-text search by providing valuable insights into user behavior and search patterns. When users co