Sparse refers to data or structures where most of the elements are zero or inactive. In machine learning and data processing, sparse data often arises when dealing with high-dimensional datasets, such as text-based data or recommendation systems. For instance, in a document-term matrix, each row represents a document, and each column represents a word. Most documents use only a small fraction of all words, leaving many elements in the matrix as zero. Sparse representations are beneficial for reducing computational and storage costs because they allow algorithms to focus only on the non-zero or active elements. This efficiency makes sparse methods crucial in areas like natural language processing (NLP), where sparse word embeddings are common, and in recommendation systems, where user-item interaction matrices are often sparse. While sparsity provides efficiency, it also introduces challenges, such as handling data efficiently in memory and ensuring that algorithms designed for dense data can operate effectively. Tools and frameworks like SciPy and specialized libraries in machine learning frameworks offer robust support for sparse matrices and operations.
What is sparse vector?

- How to Pick the Right Vector Database for Your Use Case
- AI & Machine Learning
- Information Retrieval 101
- Vector Database 101: Everything You Need to Know
- Optimizing Your RAG Applications: Strategies and Methods
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
What is a foreign key cascade in relational databases?
A foreign key cascade is a feature in relational databases that helps maintain referential integrity when two tables are
How can multimodal AI be used in content moderation?
Multimodal AI can be effectively utilized in content moderation by combining different types of data inputs such as text
How do graph-based methods apply to IR?
Graph-based methods are used in information retrieval (IR) to model the relationships between documents, terms, or users