Data augmentation in deep learning refers to the process of artificially increasing the size of a training dataset by applying various transformations to the original data. This is commonly used in computer vision to create more diverse examples without the need for additional data collection. For instance, when training an image classification model, you might rotate, flip, or crop the images, change their brightness, or add noise. These transformations help the model generalize better, reducing overfitting and improving performance on unseen data. For example, in a model designed to recognize cats and dogs, applying augmentation techniques could involve rotating the images of the animals, altering their color balance, or zooming in on certain areas, which ensures the model doesn't simply memorize specific characteristics of the original images. Data augmentation is particularly useful when working with limited datasets, as it increases the diversity of the training examples, allowing the model to learn more robust features. Ultimately, the goal of data augmentation is to improve the generalization ability of deep learning models and enhance their ability to make accurate predictions on new, unseen data.
What is data augmentation in deep learning?

- Embedding 101
- Optimizing Your RAG Applications: Strategies and Methods
- The Definitive Guide to Building RAG Apps with LangChain
- Natural Language Processing (NLP) Basics
- Getting Started with Milvus
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How does AutoML automate hyperparameter tuning?
AutoML automates hyperparameter tuning by using algorithms that systematically explore different combinations of hyperpa
How can I address a scenario where similar sentences in different languages are not close in embedding space when using a multilingual model?
To address misaligned embeddings for similar sentences across languages in a multilingual model, start by diagnosing the
What modifications are needed to extend diffusion models to 3D data?
To extend diffusion models to 3D data, several key modifications must be made to accommodate the inherent differences be