A moving average is a technique used to smooth time series data by calculating the average of observations over a defined window. This method helps to reduce noise and highlights underlying trends. For example, a 5-day moving average for sales data computes the average sales of the last 5 days at each point in the series. There are different types of moving averages, such as the simple moving average (SMA) and weighted moving average (WMA). SMA assigns equal weight to all observations within the window, while WMA gives more weight to recent observations, making it more responsive to changes. These techniques are used to understand trends without being distracted by short-term fluctuations. In time series modeling, the moving average concept forms the basis of the MA component in ARIMA models. Unlike descriptive moving averages, this component adjusts predictions by incorporating past forecasting errors. For example, an MA(1) model corrects the forecast using the error from the previous time step, making it an essential tool for dynamic prediction.
What is a moving average in time series?

- Getting Started with Milvus
- Natural Language Processing (NLP) Advanced Guide
- Getting Started with Zilliz Cloud
- AI & Machine Learning
- Exploring Vector Database Use Cases
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How does full-text search handle duplicate content?
Full-text search handles duplicate content by implementing various techniques to identify, manage, and sometimes filter
How does DeepSeek handle ethical dilemmas in AI applications?
DeepSeek handles ethical dilemmas in AI applications through a structured approach that emphasizes transparency, account
How does data partitioning work in document databases?
Data partitioning in document databases is a technique used to distribute data across multiple storage locations, allowi