ResNet, short for Residual Network, is a type of deep learning architecture that has become a cornerstone in computer vision tasks. Developed by researchers at Microsoft, ResNet introduced the concept of residual learning, which addresses the problem of vanishing gradients as neural networks grow deeper. The key innovation in ResNet is the skip connection, which allows the input of a layer to bypass one or more layers and directly connect to a later layer. This mechanism enables the network to learn residual mappings—essentially, the differences between the input and output—rather than trying to learn the full mapping outright. As a result, deeper networks can converge more easily and avoid performance degradation. ResNet has been widely used for tasks like image classification, object detection, and segmentation. Its architecture has variants such as ResNet-18, ResNet-34, ResNet-50, and ResNet-101, where the numbers represent the depth of the network. ResNet’s efficiency and accuracy have made it a go-to choice for many applications in machine learning and AI.
What is ResNet?

- The Definitive Guide to Building RAG Apps with LlamaIndex
- GenAI Ecosystem
- Exploring Vector Database Use Cases
- Embedding 101
- Natural Language Processing (NLP) Basics
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How do multi-agent systems ensure fault tolerance?
Multi-agent systems ensure fault tolerance through techniques such as redundancy, decentralized control, and error detec
How does network latency affect multi-user VR environments?
Network latency significantly impacts multi-user VR environments by affecting the responsiveness and smoothness of the e
How do open-source tools integrate with enterprise systems?
Open-source tools integrate with enterprise systems by offering customizable and flexible solutions that can be tailored