Image processing using Python refers to utilizing Python libraries to manipulate and analyze images. Python has a rich ecosystem of libraries such as OpenCV, Pillow, and scikit-image that allow developers to perform a wide range of image processing tasks. With these libraries, developers can apply transformations like resizing, cropping, rotating, adjusting brightness/contrast, filtering, and edge detection. For example, OpenCV allows you to detect faces in an image, apply blurring effects, or perform complex operations like feature matching. Pillow, on the other hand, is a simpler library that supports basic operations like loading, saving, and modifying images. Python also supports image processing workflows for more advanced techniques such as segmentation, object recognition, and machine learning applications. In machine learning pipelines, image data is often preprocessed with image processing techniques (such as resizing or normalization) before feeding it into a model. Python's simplicity and wide library support make it one of the most popular languages for image processing tasks.
What is image processing by using Python?

- Accelerated Vector Search
- Master Video AI
- AI & Machine Learning
- Natural Language Processing (NLP) Basics
- Natural Language Processing (NLP) Advanced Guide
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How will quantum computing impact AI reasoning?
Quantum computing has the potential to significantly enhance the capabilities of artificial intelligence (AI) reasoning.
What does ETL stand for and why is it important in data management?
ETL stands for **Extract, Transform, Load**, a process used to collect data from multiple sources, prepare it for analys
What is REINFORCE?
REINFORCE is a policy gradient method used in reinforcement learning to optimize the decision-making process of an agent