A video processing unit (VPU) is a specialized hardware component designed to handle video processing tasks efficiently. It is optimized to perform operations such as decoding, encoding, and enhancement of video signals with minimal power consumption and latency. VPUs are commonly found in devices like smartphones, smart cameras, and media streaming devices, where video processing is essential but needs to be performed without overwhelming the main processor. The primary advantage of a VPU over general-purpose processors is its ability to process video streams more efficiently, making tasks like video decoding and real-time video enhancement faster and more energy-efficient. For instance, a VPU might be used to decode 4K video in a smartphone without causing the device to overheat or drain the battery quickly. VPUs can be built into hardware like Graphics Processing Units (GPUs), system on chips (SoCs), or integrated into other devices where high-performance video processing is required, like smart TVs or autonomous vehicles. In AI applications, VPUs are increasingly being used to accelerate tasks involving video analytics, image recognition, and real-time object tracking.
What is a video processing unit?

- Retrieval Augmented Generation (RAG) 101
- Natural Language Processing (NLP) Basics
- Evaluating Your RAG Applications: Methods and Metrics
- Embedding 101
- The Definitive Guide to Building RAG Apps with LangChain
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
Why are diversity metrics important in recommender systems?
Diversity metrics are crucial in recommender systems because they ensure that the recommendations provided to users are
What is the Granger causality test in time series analysis?
The Granger causality test is a statistical hypothesis test used in time series analysis to determine if one time series
How is SQL evolving to support big data?
SQL is evolving to support big data primarily through integration with distributed computing frameworks and enhancements