AI agents leverage a combination of technologies to perform tasks autonomously and intelligently. Machine learning, particularly deep learning, is at the core, enabling agents to recognize patterns, make decisions, and adapt to new data. Natural language processing (NLP) allows agents to understand and generate human language, which is essential for chatbots, virtual assistants, and customer service applications. Reinforcement learning is used for training agents in dynamic environments, such as robotics and gaming. Computer vision enables agents to process visual data for tasks like object recognition and navigation. Technologies like transformers, used in models such as GPT and BERT, have revolutionized NLP and multimodal AI capabilities. These technologies are often integrated with APIs, cloud computing, and edge devices to create scalable and efficient AI agents for various domains, including healthcare, finance, and customer support.
What AI technologies are used to power AI agents?

- Exploring Vector Database Use Cases
- Mastering Audio AI
- AI & Machine Learning
- Getting Started with Zilliz Cloud
- Natural Language Processing (NLP) Advanced Guide
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How does DeepSeek collaborate with other tech companies?
DeepSeek collaborates with other tech companies through a variety of strategic partnerships and integrations aimed at en
How is logging implemented in database observability?
Logging in database observability involves systematically collecting and analyzing data about database operations, error
How do SaaS companies handle data security?
SaaS companies prioritize data security through several layers of protection that help secure user data from unauthorize