To begin learning computer vision, start by understanding its fundamental concepts, such as image processing, feature extraction, and object detection. Familiarize yourself with key concepts like pixels, color spaces, and edge detection. Free online resources, like Coursera’s computer vision courses or OpenCV’s official documentation, provide an excellent introduction. After grasping the basics, learn how to use OpenCV, one of the most popular libraries for image processing and computer vision. Install it using Python (pip install opencv-python) and experiment with its functions, such as loading images, applying filters, and performing face detection. Move on to more advanced topics like deep learning for computer vision using TensorFlow or PyTorch. Once you have experience with tools and libraries, explore datasets like ImageNet or COCO to work on real-world challenges. Participating in projects or competitions on Kaggle is a great way to build practical skills. Supplement your learning with books like "Computer Vision: Algorithms and Applications" by Richard Szeliski or "Deep Learning for Vision Systems" by Mohamed Elgendy. Practical experience combined with a solid theoretical foundation will help you excel in computer vision.
I want to learn Computer Vision. Where should I start?

- Vector Database 101: Everything You Need to Know
- Mastering Audio AI
- AI & Machine Learning
- Getting Started with Milvus
- Natural Language Processing (NLP) Basics
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
What tools can visualize neural network architectures?
Several tools can help visualize neural network architectures, making it easier for developers and researchers to unders
What are the trends in SaaS development?
Trends in SaaS development are shaping how software is built, delivered, and consumed. One significant trend is the shif
How do robots use reinforcement learning to improve their performance over time?
Robots use reinforcement learning (RL) to improve their performance by learning from their experiences in dynamic enviro