To begin learning computer vision, start by understanding its fundamental concepts, such as image processing, feature extraction, and object detection. Familiarize yourself with key concepts like pixels, color spaces, and edge detection. Free online resources, like Coursera’s computer vision courses or OpenCV’s official documentation, provide an excellent introduction. After grasping the basics, learn how to use OpenCV, one of the most popular libraries for image processing and computer vision. Install it using Python (pip install opencv-python) and experiment with its functions, such as loading images, applying filters, and performing face detection. Move on to more advanced topics like deep learning for computer vision using TensorFlow or PyTorch. Once you have experience with tools and libraries, explore datasets like ImageNet or COCO to work on real-world challenges. Participating in projects or competitions on Kaggle is a great way to build practical skills. Supplement your learning with books like "Computer Vision: Algorithms and Applications" by Richard Szeliski or "Deep Learning for Vision Systems" by Mohamed Elgendy. Practical experience combined with a solid theoretical foundation will help you excel in computer vision.
I want to learn Computer Vision. Where should I start?

- Evaluating Your RAG Applications: Methods and Metrics
- The Definitive Guide to Building RAG Apps with LlamaIndex
- How to Pick the Right Vector Database for Your Use Case
- Getting Started with Milvus
- GenAI Ecosystem
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How do you handle long-tail queries?
Handling long-tail queries involves optimizing for search terms that are more specific and often longer in length. These
What are the security challenges in serverless computing?
Serverless computing offers developers the ability to build and deploy applications without the need to manage the under
How do AI agents adapt to new environments?
AI agents adapt to new environments primarily through learning mechanisms, which allow them to adjust their behaviors ba