Evaluating the accuracy of a time series model involves comparing the model's predictions to actual values using error metrics. Common metrics include Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). These metrics quantify the difference between predicted and observed values, with lower values indicating better accuracy. Visual inspection of residuals is another important step. By plotting the residuals (differences between predicted and actual values), you can check for patterns or biases. Ideally, residuals should resemble white noise, meaning they are randomly distributed with no discernible patterns. Cross-validation can further validate accuracy. A common method is time-based splitting, where the model is trained on one segment of the data and tested on subsequent segments. This ensures the evaluation mirrors real-world scenarios where future data is not available during training. Tools like Python’s sklearn
or statsmodels
provide built-in functions to calculate error metrics and visualize results.
How do you evaluate the accuracy of a time series model?

- Large Language Models (LLMs) 101
- Evaluating Your RAG Applications: Methods and Metrics
- Information Retrieval 101
- The Definitive Guide to Building RAG Apps with LlamaIndex
- Accelerated Vector Search
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How do you implement class-conditional diffusion models?
To implement class-conditional diffusion models, you first need to understand the basic structure of a diffusion model.
How do mobile and desktop video search experiences differ?
Mobile and desktop video search experiences differ primarily in terms of screen size, user interaction, and context of u
Which APIs are popular for audio search and recognition?
When it comes to audio search and recognition, there are several popular APIs that developers frequently use to integrat