Spatial pooling in computer vision refers to a process in neural networks, particularly in convolutional neural networks (CNNs), that reduces the spatial size of the input feature maps. The primary goal is to decrease the computational load and the number of parameters, while retaining the important features in the data. Spatial pooling, typically achieved through operations like max pooling or average pooling, helps make the network more efficient by summarizing the presence of features in certain regions. For example, in max pooling, the highest value in a small patch of the feature map is selected, and in average pooling, the average value is computed. This reduces the resolution of the feature maps, making the network less sensitive to small spatial translations of the input. Spatial pooling is used in many computer vision applications, such as object detection or image classification, where it's important to recognize the presence of features without being overly concerned with their exact location in the image. It also helps prevent overfitting by generalizing the learned features.
What is spatial pooling in computer vision?

- Exploring Vector Database Use Cases
- Large Language Models (LLMs) 101
- Accelerated Vector Search
- Natural Language Processing (NLP) Basics
- Vector Database 101: Everything You Need to Know
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How do I perform data ingestion in Haystack?
To perform data ingestion in Haystack, you start by setting up your document store, which acts as a database for storing
How does data governance handle legacy systems?
Data governance addresses legacy systems by establishing clear policies and processes for managing data throughout its l
What is anomaly detection in predictive analytics?
Anomaly detection in predictive analytics refers to the process of identifying data points, events, or observations that