Feature extraction is the process of transforming raw data (such as an image, video, or text) into a set of features that are easier for machine learning algorithms to analyze and interpret. In the context of image processing, it involves identifying the most important and distinct parts of an image—such as edges, textures, or shapes—that are relevant to the task at hand. For instance, in a task like object recognition, features might include the shape of an object, its texture, or distinctive points that mark the object’s boundaries. Histogram of Oriented Gradients (HOG) is one such method for feature extraction that helps capture edge information for object detection. In the context of text data, feature extraction may involve converting raw text into numerical features, like word frequency or sentence structure, which are then used for text classification or sentiment analysis. Once features are extracted, they can be used by machine learning models for tasks like image classification, speech recognition, or natural language processing. Feature extraction is crucial because it reduces the amount of data that needs to be processed, removes unnecessary information, and highlights patterns that are key to making predictions. For example, in facial recognition, features like the distance between eyes or the shape of the jawline may be extracted to distinguish one person from another.
What is feature extraction?

- Accelerated Vector Search
- Exploring Vector Database Use Cases
- Getting Started with Zilliz Cloud
- Getting Started with Milvus
- Information Retrieval 101
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
Does Bedrock allow any control over the underlying hardware or instance types for inference (or is this fully managed and abstracted), and how does the underlying infrastructure impact observed performance?
AWS Bedrock is a fully managed service, meaning it abstracts away all underlying hardware and infrastructure management.
How do embeddings integrate with cloud-based solutions?
Embeddings integrate with cloud-based solutions by leveraging cloud storage, databases, and machine learning services. C
How are vector embeddings used in machine learning?
Vector embeddings are numerical representations of data that capture the semantic relationships between different items