In computer vision, a blob is a region of an image that differs in properties like color or intensity from its surrounding areas. The term "blob" refers to areas that are connected and form a distinct pattern within an image, typically used to represent objects, features, or areas of interest in object detection and segmentation tasks. Blob detection methods aim to identify these regions by analyzing properties such as shape, size, and texture. A common technique for blob detection is the Laplacian of Gaussian (LoG), which highlights regions of the image that show significant changes in intensity. Another approach is Connected Component Labeling, which marks pixels that are connected based on a threshold, helping to group them into distinct blobs. In more advanced applications, blob analysis can be used to measure characteristics like area, circularity, and perimeter, which are helpful in tasks like object tracking and recognition. A practical example of blob detection is its use in object tracking in video streams, where each moving object is treated as a blob for further analysis. Blobs are important in a variety of computer vision tasks because they help isolate areas of interest, making it easier to focus on specific objects in the image.
What is blob in computer vision?

- Accelerated Vector Search
- Exploring Vector Database Use Cases
- Optimizing Your RAG Applications: Strategies and Methods
- Advanced Techniques in Vector Database Management
- Information Retrieval 101
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How to use PyTorch for computer vision tasks?
PyTorch is a versatile framework for computer vision tasks like image classification, object detection, and image segmen
How are embeddings compressed for efficiency?
Embeddings, which are dense vector representations of data, often require significant storage space and computational re
How do Vision-Language Models differ from traditional computer vision and natural language processing models?
Vision-Language Models (VLMs) stand apart from traditional computer vision and natural language processing (NLP) models