In computer vision, a blob is a region of an image that differs in properties like color or intensity from its surrounding areas. The term "blob" refers to areas that are connected and form a distinct pattern within an image, typically used to represent objects, features, or areas of interest in object detection and segmentation tasks. Blob detection methods aim to identify these regions by analyzing properties such as shape, size, and texture. A common technique for blob detection is the Laplacian of Gaussian (LoG), which highlights regions of the image that show significant changes in intensity. Another approach is Connected Component Labeling, which marks pixels that are connected based on a threshold, helping to group them into distinct blobs. In more advanced applications, blob analysis can be used to measure characteristics like area, circularity, and perimeter, which are helpful in tasks like object tracking and recognition. A practical example of blob detection is its use in object tracking in video streams, where each moving object is treated as a blob for further analysis. Blobs are important in a variety of computer vision tasks because they help isolate areas of interest, making it easier to focus on specific objects in the image.
What is blob in computer vision?

- Master Video AI
- Natural Language Processing (NLP) Advanced Guide
- Natural Language Processing (NLP) Basics
- Exploring Vector Database Use Cases
- Getting Started with Zilliz Cloud
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How is AutoML applied in healthcare?
AutoML, or Automated Machine Learning, is increasingly being applied in healthcare to streamline the development and dep
How does AutoML support multi-label classification problems?
AutoML, or Automated Machine Learning, provides significant support for multi-label classification problems by simplifyi
How do you identify cyclic patterns in time series data?
Identifying cyclic patterns in time series data involves analyzing data points collected at regular intervals to detect