In computer vision, a blob is a region of an image that differs in properties like color or intensity from its surrounding areas. The term "blob" refers to areas that are connected and form a distinct pattern within an image, typically used to represent objects, features, or areas of interest in object detection and segmentation tasks. Blob detection methods aim to identify these regions by analyzing properties such as shape, size, and texture. A common technique for blob detection is the Laplacian of Gaussian (LoG), which highlights regions of the image that show significant changes in intensity. Another approach is Connected Component Labeling, which marks pixels that are connected based on a threshold, helping to group them into distinct blobs. In more advanced applications, blob analysis can be used to measure characteristics like area, circularity, and perimeter, which are helpful in tasks like object tracking and recognition. A practical example of blob detection is its use in object tracking in video streams, where each moving object is treated as a blob for further analysis. Blobs are important in a variety of computer vision tasks because they help isolate areas of interest, making it easier to focus on specific objects in the image.
What is blob in computer vision?

- How to Pick the Right Vector Database for Your Use Case
- Optimizing Your RAG Applications: Strategies and Methods
- Vector Database 101: Everything You Need to Know
- Getting Started with Milvus
- The Definitive Guide to Building RAG Apps with LlamaIndex
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How can we incorporate metrics like nDCG (normalized discounted cumulative gain) to evaluate ranked retrieval outputs in a RAG context where document order may influence the generator?
To evaluate ranked retrieval outputs in a RAG system using nDCG, start by defining graded relevance scores for documents
How does multimodal AI contribute to sustainable energy solutions?
Multimodal AI contributes to sustainable energy solutions by integrating and analyzing data from various sources, includ
What is the role of collections in document databases?
Collections in document databases play a critical role in organizing and storing data. A collection is essentially a gro