Several seminal papers have significantly shaped the field of computer vision. One of the most influential is "A Computational Approach to Edge Detection" by John Canny (1986), which introduced the Canny edge detector, a crucial method for detecting edges in images. This paper laid the groundwork for many subsequent edge-detection algorithms. Another important paper is "Object Recognition from Local Scale-Invariant Features" by David Lowe (1999), which introduced the SIFT (Scale-Invariant Feature Transform) algorithm. SIFT is widely used for feature extraction in object recognition, particularly in tasks where scale and rotation variance are significant. A foundational paper in the deep learning era is "ImageNet Large-Scale Visual Recognition Challenge" by Olga Russakovsky et al. (2015), which detailed the ImageNet dataset and the deep learning methods used for image classification. This paper is credited with demonstrating the effectiveness of Convolutional Neural Networks (CNNs) in large-scale image classification tasks. Another key paper is "Fast R-CNN" by Ross B. Girshick (2015), which improved object detection by integrating region proposal networks with CNNs. These works, among others, continue to influence modern computer vision techniques.
What are the seminal papers on computer vision?

- Retrieval Augmented Generation (RAG) 101
- Accelerated Vector Search
- How to Pick the Right Vector Database for Your Use Case
- Master Video AI
- GenAI Ecosystem
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How does SSL apply to generative adversarial networks (GANs)?
SSL, or Semi-Supervised Learning, can play a significant role in enhancing the performance of Generative Adversarial Net
How does image recognition AI work?
Image recognition AI works by analyzing visual data to identify objects, patterns, or features. It uses convolutional ne
What is cosine similarity, and how is it used with embeddings?
Cosine similarity is a metric used to measure the similarity between two vectors by calculating the cosine of the angle