ARIMA models have several limitations, starting with their assumption of linear relationships in data. They struggle to capture complex, nonlinear patterns that are common in real-world datasets, such as stock prices influenced by market sentiment or demand affected by unpredictable events. ARIMA is most effective for datasets with clear linear trends and seasonality. Another limitation is the requirement for stationarity. Time series data often exhibit trends or seasonality, requiring preprocessing like differencing or seasonal adjustments before applying ARIMA. While this ensures the model works correctly, it can be time-consuming and may not always yield a truly stationary series. ARIMA also requires manual selection or fine-tuning of parameters (p, d, q), which can be challenging. Although tools like auto_arima automate this process, they may not always provide optimal results. Moreover, ARIMA does not handle missing values well, and its forecasting horizon is limited; predictions become less accurate as the horizon extends, making it unsuitable for long-term forecasts.
What are the limitations of ARIMA models?

- Getting Started with Zilliz Cloud
- Optimizing Your RAG Applications: Strategies and Methods
- Mastering Audio AI
- Retrieval Augmented Generation (RAG) 101
- The Definitive Guide to Building RAG Apps with LlamaIndex
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
What are the privacy implications of edge AI?
Edge AI refers to the deployment of artificial intelligence algorithms directly on local devices rather than in centrali
How do SaaS companies acquire customers?
SaaS companies acquire customers through a combination of targeted marketing strategies, free trials, and effective onbo
How are embeddings applied to text summarization?
Embeddings are a crucial component in text summarization, as they allow for a numerical representation of words and phra