No, ResNet is not an R-CNN model, but it is often used in conjunction with R-CNN architectures. ResNet (Residual Network) is a deep convolutional neural network designed to address the vanishing gradient problem in deep learning. It introduces shortcut connections that allow gradients to flow more effectively through the network, enabling the training of very deep models. R-CNN (Region-based Convolutional Neural Networks) is a family of object detection architectures, including Fast R-CNN and Faster R-CNN, which focus on identifying objects within an image. ResNet is frequently used as the backbone feature extractor in R-CNN models due to its efficiency and high accuracy. While ResNet is not inherently an R-CNN, its integration into R-CNN pipelines demonstrates how the two work together to achieve state-of-the-art performance in object detection tasks.
Is ResNet one of the R-CNN model?

- Optimizing Your RAG Applications: Strategies and Methods
- Vector Database 101: Everything You Need to Know
- Getting Started with Milvus
- AI & Machine Learning
- Large Language Models (LLMs) 101
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How do organizations ensure data transparency through governance?
Organizations ensure data transparency through governance by establishing clear policies, maintaining accurate documenta
What is the role of transaction isolation in distributed systems?
Transaction isolation in distributed systems plays a crucial role in ensuring data consistency and integrity when multip
What is the impact of quantum computing on big data?
Quantum computing represents a significant shift in how we process and analyze big data. Traditional computers rely on b