Collaborative filtering is a technique used in recommendation systems to predict user preferences based on past interactions and the behavior of similar users. The collaborative filtering matrix, often referred to as a utility matrix, is a structured representation of data where rows typically represent users and columns represent items (such as products, movies, or songs). The cells within this matrix record the interactions between users and items, which can be in the form of ratings, counts of interactions, or binary data indicating whether a specific user has interacted with an item.
For example, consider a movie recommendation system where users rate movies on a scale from 1 to 5. The collaborative filtering matrix would have rows for each user (User A, User B, User C) and columns for each movie (Movie 1, Movie 2, Movie 3). If User A rated Movie 1 a 5, Movie 2 a 3, and Movie 3 has not been rated, the matrix would reflect those values. User B, having only rated Movie 1 a 4 and not rated the others, would show a similar sparse pattern. This sparsity is common in collaborative filtering matrices, where many cells remain empty because users haven’t interacted with all available items.
The collaborative filtering matrix can be expanded in different ways, depending on specific approaches such as user-based or item-based filtering. In user-based filtering, similarities between users are calculated to recommend items that similar users have liked. Conversely, item-based filtering looks for similarities between items based on the ratings they received across all users. Both methods allow developers to fill in the gaps in the matrix, either through techniques like k-nearest neighbors or matrix factorization, thus providing personalized recommendations even when direct user-item interactions are limited.