In image processing, a patch refers to a small, localized section or subset of an image. It is often extracted from a larger image to analyze specific features or conduct operations like filtering, texture analysis, or object recognition on that smaller region. A patch can be as simple as a rectangular or square block of pixels, usually with a fixed size, that helps focus attention on a part of the image while ignoring irrelevant areas. For example, in convolutional neural networks (CNNs), patches are used in the convolutional layer where filters or kernels are applied to scan through the image, extracting local features such as edges or textures. In image registration, patches can also be used to match corresponding points in two different images of the same scene. Additionally, patch-based methods are widely used in applications like image denoising, super-resolution, and segmentation, where each patch is processed to improve image quality or extract detailed information about structures within the image. The advantage of working with patches is that it reduces the computational complexity by focusing on small regions of interest instead of processing the entire image at once.
What is a patch in image processing?

- Accelerated Vector Search
- Large Language Models (LLMs) 101
- How to Pick the Right Vector Database for Your Use Case
- The Definitive Guide to Building RAG Apps with LlamaIndex
- Getting Started with Milvus
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How does predictive analytics support energy management?
Predictive analytics plays a significant role in supporting energy management by enabling organizations to forecast ener
When is SIFT preferred over a CNN?
SIFT (Scale-Invariant Feature Transform) is preferred over CNNs in scenarios requiring handcrafted feature extraction, s
What is the significance of novelty in recommender systems?
Novelty in recommender systems is significant as it helps keep users engaged by introducing them to new and diverse cont