Convolutional Neural Networks (CNNs) are a popular choice for tasks like image classification, object detection, and segmentation. To use CNNs, start by selecting a framework like PyTorch or TensorFlow. These frameworks provide APIs for building CNN layers, such as convolutional layers (Conv2D), activation functions (ReLU), and pooling layers, which extract spatial features from images. Once the CNN architecture is defined, the next step is data preparation. Images in the dataset should be resized to a consistent size and normalized. Augmentation techniques like rotation, flipping, or cropping help improve the model's generalization by simulating diverse conditions. The dataset is usually split into training, validation, and testing subsets. Training involves feeding labeled data into the network, using a loss function like cross-entropy (for classification tasks), and optimizing weights through algorithms like Adam or SGD. Post-training, the model's performance is evaluated on test data to measure metrics such as accuracy or precision. Fine-tuning pre-trained CNNs like ResNet or MobileNet can save significant time and computational resources when working on specialized tasks. These models are trained on large datasets (like ImageNet) and can be adapted to domain-specific applications, such as medical imaging, robotics, or autonomous systems.
How to use Convolutional Neural Network in your projects?

- Exploring Vector Database Use Cases
- The Definitive Guide to Building RAG Apps with LlamaIndex
- Large Language Models (LLMs) 101
- AI & Machine Learning
- The Definitive Guide to Building RAG Apps with LangChain
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How are AutoML competitions like Kaggle impacting the field?
AutoML competitions like those hosted on Kaggle significantly impact the field of machine learning by fostering collabor
What are constraints in a relational database?
Constraints in a relational database are rules that govern the data being stored in a table. They ensure the integrity,
How does augmentation improve vision transformers?
Augmentation improves vision transformers by enhancing their training datasets, which leads to better model performance