Vector search, or vector similarity search, is a technique to find similar items within a dataset by representing them as high-dimensional vectors. Unlike keyword search, which relies on exact term matching, vector search evaluates semantic relationships, enabling it to retrieve results based on meaning or context. For instance, a search for "apple" could return results about the fruit or the company based on contextual clues. The core idea is to measure how "close" vectors are in a multi-dimensional space to identify related items. This process involves mapping data—like text, images, or audio—into numerical vectors. These vectors reside in a high-dimensional space where similar items cluster together. The similarity between vectors is determined using metrics such as Euclidean distance or cosine similarity. For example, two similar images might have vectors that are closer together than those of unrelated images. Indexing methods like k-d trees or HNSW graphs help efficiently organize and retrieve vectors. Applications of vector search are vast. It's used in recommendation systems (e.g., Netflix suggesting movies), semantic search engines (e.g., retrieving contextually relevant documents), and image retrieval systems (e.g., finding visually similar photos). By leveraging the power of embeddings and proximity-based comparisons, vector search offers precise and contextually relevant results, bridging the gap between raw data and actionable insights.
What is vector search?

- Evaluating Your RAG Applications: Methods and Metrics
- Information Retrieval 101
- Vector Database 101: Everything You Need to Know
- Large Language Models (LLMs) 101
- Optimizing Your RAG Applications: Strategies and Methods
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How do you evaluate the performance of a reinforcement learning agent?
Evaluating the performance of a reinforcement learning (RL) agent typically involves measuring its ability to achieve a
How does quantum annealing work in solving optimization problems?
Quantum annealing is a quantum computing technique designed to solve optimization problems by finding the lowest energy
What are the latest multimodal embedding architectures?
The latest multimodal embedding architectures focus on integrating diverse data types—like text, images, audio, and sens