Object tracking has made significant advancements in recent years, with new algorithms improving accuracy and speed. One of the major developments is the integration of deep learning into traditional tracking methods. Models like DeepSORT (Deep Learning-based SORT) combine a traditional tracking algorithm (SORT) with deep learning for better feature extraction, improving the system’s ability to handle occlusions and re-identify objects in complex environments. Another advancement is the use of tracking-by-detection frameworks, where detectors identify objects in each frame, and trackers follow those detections across frames. This method, seen in models like SiamRPN (Siamese Region Proposal Network), improves performance in real-time tracking and multi-object scenarios. Transformers have also made their way into object tracking, especially with models like TransTrack that utilize self-attention mechanisms to capture long-term dependencies between object movements. This method allows more accurate and stable tracking even in crowded or occluded scenes. Additionally, multi-modal tracking is becoming a growing area, where object tracking combines data from various sensors, such as RGB cameras, LiDAR, and thermal imaging, to enhance robustness in challenging environments. These advancements are especially useful in autonomous vehicles and robotics, where precise tracking of objects in dynamic environments is crucial.
What are the latest developments in object tracking?

- AI & Machine Learning
- Embedding 101
- Information Retrieval 101
- Master Video AI
- Vector Database 101: Everything You Need to Know
- All learn series →
Recommended AI Learn Series
VectorDB for GenAI Apps
Zilliz Cloud is a managed vector database perfect for building GenAI applications.
Try Zilliz Cloud for FreeKeep Reading
How do you handle class imbalance in training?
Class imbalance is addressed by ensuring that all classes contribute equally to training. Techniques like oversampling t
How does the choice of optimizer affect diffusion model training?
The choice of optimizer plays a crucial role in training diffusion models, as it directly impacts how quickly and effect
What is the role of personalization in enhancing customer satisfaction?
Personalization plays a crucial role in enhancing customer satisfaction by making experiences more relevant and tailored