OpenAI / text-embedding-ada-002
Milvus Integrated
Задача: Встраивание
Модальность: Текст
Метрика сходства: Любой (нормализованный)
Лицензия: Собственные
Размерности: 1536
Максимальное количество входных токенов: 8191
Цена: $0,10 / 1M токенов
Введение в text-embedding-ada-002
text-embedding-ada-002 - это унаследованная от OpenAI модель встраивания текста.
Сравнение text-embedding-ada-002 с двумя другими недавно выпущенными моделями встраивания:
| Модель | Размеры | Max Tokens | Модель MIRACL avg | METB avg | Цена |
|---|---|---|---|---|---|
| text-embedding-3-large | 3072 | 8191 | 54.9 | 64.6 | $0.13 / 1M tokens |
| text-embedding-ada-002 | 1536 | 8191 | 31.4 | 61.0 | $0.10 / 1M tokens |
| text-embedding-3-small | 1536 | 8191 | 44.0 | 62.3 | $0.02 / 1M tokens |
Как генерировать векторные вкрапления с помощью text-embedding-ada-002
Существует два основных способа создания векторных вкраплений:
- PyMilvus: Python SDK для Milvus, который легко интегрируется с моделью
text-embedding-ada-002. - Библиотека OpenAI: SDK для Python, предлагаемый OpenAI.
После того как векторные вкрапления сгенерированы, их можно хранить в Zilliz Cloud (полностью управляемый сервис векторных баз данных на базе Milvus) и использовать для поиска семантического сходства. Вот четыре ключевых шага:
- Зарегистрируйтесь для получения бесплатной учетной записи Zilliz Cloud.
- Настройте бессерверный кластер и получите Публичную конечную точку и ключ API.
- Создайте коллекцию векторов и вставьте в нее свои векторные вкрапления.
- Запустите семантический поиск по сохраненным вкраплениям.
Генерировать векторные вкрапления с помощью PyMilvus и вставлять их в Zilliz Cloud для семантического поиска
from pymilvus.model.dense import OpenAIEmbeddingFunction
from pymilvus import MilvusClient
OPENAI_API_KEY = "your-openai-api-key"
ef = OpenAIEmbeddingFunction("text-embedding-ada-002", api_key=OPENAI_API_KEY)
docs = [
"Искусственный интеллект был основан как академическая дисциплина в 1956 году",
"Алан Тьюринг был первым человеком, который провел серьезные исследования в области искусственного интеллекта",
"Тьюринг родился в Майда-Вейл, Лондон, и вырос в южной Англии".
]
# Генерируем вкрапления для документов
docs_embeddings = ef(docs)
запросы = ["Когда был основан искусственный интеллект",
"Где родился Алан Тьюринг?"].
# Генерируем вкрапления для запросов
query_embeddings = ef(queries)
# Подключение к облаку Zilliz с помощью публичной конечной точки и ключа API
client = MilvusClient(
uri=ZILLIZ_PUBLIC_ENDPOINT,
token=ZILLIZ_API_KEY)
КОЛЛЕКЦИЯ = "документы"
if client.has_collection(collection_name=COLLECTION):
client.drop_collection(collection_name=COLLECTION)
client.create_collection(
имя_коллекции=COLLECTION,
dimension=ef.dim,
auto_id=True)
для doc, embedding в zip(docs, docs_embeddings):
client.insert(COLLECTION, {"text": doc, "vector": embedding})
results = client.search(
имя_коллекции=КОЛЛЕКЦИЯ,
data=query_embeddings,
consistency_level="Strong",
output_fields=["text"])
Для получения дополнительной информации обратитесь к нашей документации PyMilvus Embedding Model.
Генерировать векторные вкрапления через OpenAI's Python SDK и вставлять их в Zilliz Cloud для семантического поиска
from openai import OpenAI
from pymilvus import MilvusClient
OPENAI_API_KEY = "your-openai-api-key"
клиент = OpenAI(api_key=OPENAI_API_KEY)
документы = [
"Искусственный интеллект был основан как академическая дисциплина в 1956 году",
"Алан Тьюринг был первым человеком, который провел серьезные исследования в области искусственного интеллекта",
"Тьюринг родился в Мейда-Вейл, Лондон, и вырос в южной Англии".
]
# Генерируем вкрапления для документов
results = client.embeddings.create(input=docs, model="text-embedding-ada-002")
docs_embeddings = [data.embedding for data in results.data]
запросы = ["Когда был основан искусственный интеллект",
"Где родился Алан Тьюринг?"]
# Генерируем вкрапления для запросов
response = client.embeddings.create(input=queries, model="text-embedding-ada-002")
query_embeddings = [data.embedding for data in response.data]
# Подключение к облаку Zilliz с помощью публичной конечной точки и ключа API
client = MilvusClient(
uri=ZILLIZ_PUBLIC_ENDPOINT,
token=ZILLIZ_API_KEY)
КОЛЛЕКЦИЯ = "документы"
if client.has_collection(collection_name=COLLECTION):
client.drop_collection(collection_name=COLLECTION)
client.create_collection(
имя_коллекции=COLLECTION,
dimension=1536,
auto_id=True)
для doc, embedding в zip(docs, docs_embeddings):
client.insert(COLLECTION, {"text": doc, "vector": embedding})
results = client.search(
имя_коллекции=КОЛЛЕКЦИЯ,
data=query_embeddings,
consistency_level="Strong",
output_fields=["text"])
За дополнительной информацией обращайтесь к документации OpenAI.
- Введение в text-embedding-ada-002
- Как генерировать векторные вкрапления с помощью text-embedding-ada-002
Контент
Беспрерывные AI рабочие процессы
От встраиваний до масштабируемого AI поиска—Zilliz Cloud позволяет вам хранить, индексировать и извлекать встраивания с непревзойденной скоростью и эффективностью.
Попробуйте Zilliz Cloud Бесплатно

